sercetexam9's picture
Training completed!
441328c verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: roberta-large-finetuned-augmentation-LUNAR-TAPT-macro
    results: []

roberta-large-finetuned-augmentation-LUNAR-TAPT-macro

This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2832
  • F1: 0.8635
  • Roc Auc: 0.8937
  • Accuracy: 0.7150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.2744 1.0 421 0.2710 0.7932 0.8326 0.5754
0.2287 2.0 842 0.2281 0.8454 0.8815 0.6758
0.1678 3.0 1263 0.2293 0.8563 0.8879 0.7049
0.1287 4.0 1684 0.2491 0.8619 0.8918 0.7126
0.1298 5.0 2105 0.2591 0.8633 0.8936 0.7173
0.0788 6.0 2526 0.2703 0.8612 0.8914 0.7138
0.0883 7.0 2947 0.2679 0.8605 0.8905 0.7203
0.0821 8.0 3368 0.2832 0.8635 0.8937 0.7150
0.0739 9.0 3789 0.2998 0.8601 0.8963 0.7156
0.0538 10.0 4210 0.2951 0.8615 0.8957 0.7167
0.0466 11.0 4631 0.2999 0.8626 0.8976 0.7126
0.0657 12.0 5052 0.3060 0.8608 0.8976 0.7203

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0