bart_sum_samsum

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5320
  • Gen Len: 59.9242
  • Rouge Score: {'rouge1': 0.3935658688306535, 'rouge2': 0.18713851540657486, 'rougeL': 0.29574644161280017, 'rougeLsum': 0.3606436542704101}
  • Bleu Score: {'bleu': 0.10800411600387674, 'precisions': [0.2944046763926386, 0.13710024017191252, 0.07618039600382064, 0.044252221841293286], 'brevity_penalty': 1.0, 'length_ratio': 2.163959907809401, 'translation_length': 40373, 'reference_length': 18657}
  • Bleurt Score: -0.4998
  • Bert Score: [0.8805868625640869, 0.9189654588699341, 0.899208664894104]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Gen Len Rouge Score Bleu Score Bleurt Score Bert Score
1.9517 1.0 921 1.8653 59.8374 {'rouge1': 0.38519198024299967, 'rouge2': 0.18637611248242514, 'rougeL': 0.29114807190727665, 'rougeLsum': 0.35950287045215523} {'bleu': 0.10947202918144075, 'precisions': [0.2891732184886574, 0.1408997955010225, 0.07921257375593964, 0.04449898623412656], 'brevity_penalty': 1.0, 'length_ratio': 2.1406442622072146, 'translation_length': 39938, 'reference_length': 18657} -0.5574 [0.881794273853302, 0.914982795715332, 0.897921621799469]
1.4162 2.0 1842 2.1673 60.6736 {'rouge1': 0.3824027985681461, 'rouge2': 0.17720440481192257, 'rougeL': 0.27951993033831063, 'rougeLsum': 0.3523751309023303} {'bleu': 0.10292900287115767, 'precisions': [0.29144708090182264, 0.13358367689924108, 0.07251160668759896, 0.03975854026615448], 'brevity_penalty': 1.0, 'length_ratio': 2.084954708688428, 'translation_length': 38899, 'reference_length': 18657} -0.7567 [0.873441755771637, 0.9113098978996277, 0.8918185234069824]
0.9763 3.0 2763 1.8854 59.8851 {'rouge1': 0.3925367542901428, 'rouge2': 0.19030742072418566, 'rougeL': 0.29557020575264703, 'rougeLsum': 0.36302164503856826} {'bleu': 0.11050318220968344, 'precisions': [0.29364664926022627, 0.14059446150722135, 0.0786956634438425, 0.04589391170784672], 'brevity_penalty': 1.0, 'length_ratio': 2.1554912365332046, 'translation_length': 40215, 'reference_length': 18657} -0.5280 [0.880211353302002, 0.9188302755355835, 0.8989349007606506]
0.5749 4.0 3684 2.1209 59.8313 {'rouge1': 0.39413787163188574, 'rouge2': 0.18797763014604468, 'rougeL': 0.29824353058090336, 'rougeLsum': 0.36387927887558746} {'bleu': 0.10944201950995913, 'precisions': [0.2954957640803955, 0.1391474146019831, 0.07730156674867279, 0.045135857343175385], 'brevity_penalty': 1.0, 'length_ratio': 2.1574208072037306, 'translation_length': 40251, 'reference_length': 18657} -0.5075 [0.8815322518348694, 0.9193716049194336, 0.89988774061203]
0.2765 5.0 4605 2.5320 59.9242 {'rouge1': 0.3935658688306535, 'rouge2': 0.18713851540657486, 'rougeL': 0.29574644161280017, 'rougeLsum': 0.3606436542704101} {'bleu': 0.10800411600387674, 'precisions': [0.2944046763926386, 0.13710024017191252, 0.07618039600382064, 0.044252221841293286], 'brevity_penalty': 1.0, 'length_ratio': 2.163959907809401, 'translation_length': 40373, 'reference_length': 18657} -0.4998 [0.8805868625640869, 0.9189654588699341, 0.899208664894104]

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.10.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sentientconch/bart_sum_samsum

Finetuned
(327)
this model