|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
language: en |
|
license: apache-2.0 |
|
datasets: |
|
- s2orc |
|
- flax-sentence-embeddings/stackexchange_xml |
|
- MS Marco |
|
- gooaq |
|
- yahoo_answers_topics |
|
- code_search_net |
|
- search_qa |
|
- eli5 |
|
- snli |
|
- multi_nli |
|
- wikihow |
|
- natural_questions |
|
- trivia_qa |
|
- embedding-data/sentence-compression |
|
- embedding-data/flickr30k-captions |
|
- embedding-data/altlex |
|
- embedding-data/simple-wiki |
|
- embedding-data/QQP |
|
- embedding-data/SPECTER |
|
- embedding-data/PAQ_pairs |
|
- embedding-data/WikiAnswers |
|
model-index: |
|
- name: all-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 |
|
metrics: |
|
- type: accuracy |
|
value: 65.28358208955224 |
|
- type: ap |
|
value: 28.02247873560022 |
|
- type: f1 |
|
value: 59.09977445939425 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
config: de |
|
split: test |
|
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 |
|
metrics: |
|
- type: accuracy |
|
value: 57.09850107066381 |
|
- type: ap |
|
value: 73.38224986285773 |
|
- type: f1 |
|
value: 55.183322516223434 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
config: en-ext |
|
split: test |
|
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 |
|
metrics: |
|
- type: accuracy |
|
value: 67.24137931034483 |
|
- type: ap |
|
value: 17.93337056203553 |
|
- type: f1 |
|
value: 55.200711090858846 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 |
|
metrics: |
|
- type: accuracy |
|
value: 59.91434689507494 |
|
- type: ap |
|
value: 13.610920446878454 |
|
- type: f1 |
|
value: 48.70464699796398 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 |
|
metrics: |
|
- type: accuracy |
|
value: 62.984899999999996 |
|
- type: ap |
|
value: 58.19701547898307 |
|
- type: f1 |
|
value: 62.704020410756144 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 30.792 |
|
- type: f1 |
|
value: 30.254565315575437 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
config: de |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 25.907999999999998 |
|
- type: f1 |
|
value: 25.538149526380543 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 27.634000000000004 |
|
- type: f1 |
|
value: 27.287076320171728 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
config: fr |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 27.540000000000003 |
|
- type: f1 |
|
value: 27.21486019130574 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
config: ja |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 23.566000000000003 |
|
- type: f1 |
|
value: 23.3492650771905 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: c379a6705fec24a2493fa68e011692605f44e119 |
|
metrics: |
|
- type: accuracy |
|
value: 22.99 |
|
- type: f1 |
|
value: 22.47175043426865 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.257 |
|
- type: map_at_10 |
|
value: 38.083 |
|
- type: map_at_100 |
|
value: 39.263999999999996 |
|
- type: map_at_1000 |
|
value: 39.273 |
|
- type: map_at_3 |
|
value: 32.574999999999996 |
|
- type: map_at_5 |
|
value: 35.669000000000004 |
|
- type: mrr_at_1 |
|
value: 23.613 |
|
- type: mrr_at_10 |
|
value: 38.243 |
|
- type: mrr_at_100 |
|
value: 39.410000000000004 |
|
- type: mrr_at_1000 |
|
value: 39.419 |
|
- type: mrr_at_3 |
|
value: 32.883 |
|
- type: mrr_at_5 |
|
value: 35.766999999999996 |
|
- type: ndcg_at_1 |
|
value: 23.257 |
|
- type: ndcg_at_10 |
|
value: 47.128 |
|
- type: ndcg_at_100 |
|
value: 52.093 |
|
- type: ndcg_at_1000 |
|
value: 52.315999999999995 |
|
- type: ndcg_at_3 |
|
value: 35.794 |
|
- type: ndcg_at_5 |
|
value: 41.364000000000004 |
|
- type: precision_at_1 |
|
value: 23.257 |
|
- type: precision_at_10 |
|
value: 7.632 |
|
- type: precision_at_100 |
|
value: 0.979 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 15.055 |
|
- type: precision_at_5 |
|
value: 11.735 |
|
- type: recall_at_1 |
|
value: 23.257 |
|
- type: recall_at_10 |
|
value: 76.31599999999999 |
|
- type: recall_at_100 |
|
value: 97.866 |
|
- type: recall_at_1000 |
|
value: 99.57300000000001 |
|
- type: recall_at_3 |
|
value: 45.164 |
|
- type: recall_at_5 |
|
value: 58.677 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 |
|
metrics: |
|
- type: v_measure |
|
value: 46.06982724111873 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 |
|
metrics: |
|
- type: v_measure |
|
value: 37.501829188148264 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c |
|
metrics: |
|
- type: map |
|
value: 64.06160552465775 |
|
- type: mrr |
|
value: 77.40029899309677 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: 9ee918f184421b6bd48b78f6c714d86546106103 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.73300462416691 |
|
- type: cos_sim_spearman |
|
value: 83.56756679430214 |
|
- type: euclidean_pearson |
|
value: 84.35153960397948 |
|
- type: euclidean_spearman |
|
value: 83.56756679430214 |
|
- type: manhattan_pearson |
|
value: 84.10087673223914 |
|
- type: manhattan_spearman |
|
value: 83.58383222516198 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 |
|
metrics: |
|
- type: accuracy |
|
value: 80.40259740259741 |
|
- type: f1 |
|
value: 79.7932665380276 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 |
|
metrics: |
|
- type: v_measure |
|
value: 36.985834019439366 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 |
|
metrics: |
|
- type: v_measure |
|
value: 33.207831360185644 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.975 |
|
- type: map_at_10 |
|
value: 47.227999999999994 |
|
- type: map_at_100 |
|
value: 48.91 |
|
- type: map_at_1000 |
|
value: 49.016 |
|
- type: map_at_3 |
|
value: 43.334 |
|
- type: map_at_5 |
|
value: 45.353 |
|
- type: mrr_at_1 |
|
value: 43.348 |
|
- type: mrr_at_10 |
|
value: 53.744 |
|
- type: mrr_at_100 |
|
value: 54.432 |
|
- type: mrr_at_1000 |
|
value: 54.458 |
|
- type: mrr_at_3 |
|
value: 51.359 |
|
- type: mrr_at_5 |
|
value: 52.825 |
|
- type: ndcg_at_1 |
|
value: 43.348 |
|
- type: ndcg_at_10 |
|
value: 54.118 |
|
- type: ndcg_at_100 |
|
value: 59.496 |
|
- type: ndcg_at_1000 |
|
value: 60.846999999999994 |
|
- type: ndcg_at_3 |
|
value: 49.001 |
|
- type: ndcg_at_5 |
|
value: 51.245 |
|
- type: precision_at_1 |
|
value: 43.348 |
|
- type: precision_at_10 |
|
value: 10.658 |
|
- type: precision_at_100 |
|
value: 1.701 |
|
- type: precision_at_1000 |
|
value: 0.214 |
|
- type: precision_at_3 |
|
value: 23.701 |
|
- type: precision_at_5 |
|
value: 17.082 |
|
- type: recall_at_1 |
|
value: 34.975 |
|
- type: recall_at_10 |
|
value: 66.291 |
|
- type: recall_at_100 |
|
value: 88.727 |
|
- type: recall_at_1000 |
|
value: 97.26700000000001 |
|
- type: recall_at_3 |
|
value: 51.505 |
|
- type: recall_at_5 |
|
value: 57.833 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 31.509999999999998 |
|
- type: map_at_10 |
|
value: 43.401 |
|
- type: map_at_100 |
|
value: 44.762 |
|
- type: map_at_1000 |
|
value: 44.906 |
|
- type: map_at_3 |
|
value: 39.83 |
|
- type: map_at_5 |
|
value: 41.784 |
|
- type: mrr_at_1 |
|
value: 39.936 |
|
- type: mrr_at_10 |
|
value: 49.534 |
|
- type: mrr_at_100 |
|
value: 50.126000000000005 |
|
- type: mrr_at_1000 |
|
value: 50.163999999999994 |
|
- type: mrr_at_3 |
|
value: 46.996 |
|
- type: mrr_at_5 |
|
value: 48.508 |
|
- type: ndcg_at_1 |
|
value: 39.936 |
|
- type: ndcg_at_10 |
|
value: 49.845 |
|
- type: ndcg_at_100 |
|
value: 54.25600000000001 |
|
- type: ndcg_at_1000 |
|
value: 56.227000000000004 |
|
- type: ndcg_at_3 |
|
value: 44.982 |
|
- type: ndcg_at_5 |
|
value: 47.187 |
|
- type: precision_at_1 |
|
value: 39.936 |
|
- type: precision_at_10 |
|
value: 9.771 |
|
- type: precision_at_100 |
|
value: 1.575 |
|
- type: precision_at_1000 |
|
value: 0.20600000000000002 |
|
- type: precision_at_3 |
|
value: 22.314 |
|
- type: precision_at_5 |
|
value: 15.975 |
|
- type: recall_at_1 |
|
value: 31.509999999999998 |
|
- type: recall_at_10 |
|
value: 61.468 |
|
- type: recall_at_100 |
|
value: 80.023 |
|
- type: recall_at_1000 |
|
value: 92.267 |
|
- type: recall_at_3 |
|
value: 46.698 |
|
- type: recall_at_5 |
|
value: 53.03600000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.577 |
|
- type: map_at_10 |
|
value: 51.041000000000004 |
|
- type: map_at_100 |
|
value: 52.141000000000005 |
|
- type: map_at_1000 |
|
value: 52.190000000000005 |
|
- type: map_at_3 |
|
value: 47.904 |
|
- type: map_at_5 |
|
value: 49.645 |
|
- type: mrr_at_1 |
|
value: 44.138 |
|
- type: mrr_at_10 |
|
value: 54.36 |
|
- type: mrr_at_100 |
|
value: 55.05799999999999 |
|
- type: mrr_at_1000 |
|
value: 55.084 |
|
- type: mrr_at_3 |
|
value: 52.017 |
|
- type: mrr_at_5 |
|
value: 53.321 |
|
- type: ndcg_at_1 |
|
value: 44.138 |
|
- type: ndcg_at_10 |
|
value: 56.855999999999995 |
|
- type: ndcg_at_100 |
|
value: 61.133 |
|
- type: ndcg_at_1000 |
|
value: 62.17399999999999 |
|
- type: ndcg_at_3 |
|
value: 51.624 |
|
- type: ndcg_at_5 |
|
value: 54.108999999999995 |
|
- type: precision_at_1 |
|
value: 44.138 |
|
- type: precision_at_10 |
|
value: 9.16 |
|
- type: precision_at_100 |
|
value: 1.2309999999999999 |
|
- type: precision_at_1000 |
|
value: 0.135 |
|
- type: precision_at_3 |
|
value: 23.156 |
|
- type: precision_at_5 |
|
value: 15.762 |
|
- type: recall_at_1 |
|
value: 38.577 |
|
- type: recall_at_10 |
|
value: 70.638 |
|
- type: recall_at_100 |
|
value: 89.01 |
|
- type: recall_at_1000 |
|
value: 96.53699999999999 |
|
- type: recall_at_3 |
|
value: 56.635000000000005 |
|
- type: recall_at_5 |
|
value: 62.731 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.038 |
|
- type: map_at_10 |
|
value: 36.108000000000004 |
|
- type: map_at_100 |
|
value: 37.316 |
|
- type: map_at_1000 |
|
value: 37.396 |
|
- type: map_at_3 |
|
value: 33.206 |
|
- type: map_at_5 |
|
value: 34.674 |
|
- type: mrr_at_1 |
|
value: 29.04 |
|
- type: mrr_at_10 |
|
value: 37.979 |
|
- type: mrr_at_100 |
|
value: 39.056000000000004 |
|
- type: mrr_at_1000 |
|
value: 39.11 |
|
- type: mrr_at_3 |
|
value: 35.348 |
|
- type: mrr_at_5 |
|
value: 36.675999999999995 |
|
- type: ndcg_at_1 |
|
value: 29.04 |
|
- type: ndcg_at_10 |
|
value: 41.408 |
|
- type: ndcg_at_100 |
|
value: 46.918 |
|
- type: ndcg_at_1000 |
|
value: 48.827 |
|
- type: ndcg_at_3 |
|
value: 35.699999999999996 |
|
- type: ndcg_at_5 |
|
value: 38.112 |
|
- type: precision_at_1 |
|
value: 29.04 |
|
- type: precision_at_10 |
|
value: 6.463000000000001 |
|
- type: precision_at_100 |
|
value: 0.9570000000000001 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 15.104000000000001 |
|
- type: precision_at_5 |
|
value: 10.508000000000001 |
|
- type: recall_at_1 |
|
value: 27.038 |
|
- type: recall_at_10 |
|
value: 55.989 |
|
- type: recall_at_100 |
|
value: 80.418 |
|
- type: recall_at_1000 |
|
value: 94.506 |
|
- type: recall_at_3 |
|
value: 40.388000000000005 |
|
- type: recall_at_5 |
|
value: 46.085 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.264 |
|
- type: map_at_10 |
|
value: 26.157000000000004 |
|
- type: map_at_100 |
|
value: 27.503 |
|
- type: map_at_1000 |
|
value: 27.617000000000004 |
|
- type: map_at_3 |
|
value: 23.247999999999998 |
|
- type: map_at_5 |
|
value: 24.81 |
|
- type: mrr_at_1 |
|
value: 21.144 |
|
- type: mrr_at_10 |
|
value: 30.516 |
|
- type: mrr_at_100 |
|
value: 31.607000000000003 |
|
- type: mrr_at_1000 |
|
value: 31.673000000000002 |
|
- type: mrr_at_3 |
|
value: 27.716 |
|
- type: mrr_at_5 |
|
value: 29.357 |
|
- type: ndcg_at_1 |
|
value: 21.144 |
|
- type: ndcg_at_10 |
|
value: 31.86 |
|
- type: ndcg_at_100 |
|
value: 38.12 |
|
- type: ndcg_at_1000 |
|
value: 40.699000000000005 |
|
- type: ndcg_at_3 |
|
value: 26.411 |
|
- type: ndcg_at_5 |
|
value: 28.896 |
|
- type: precision_at_1 |
|
value: 21.144 |
|
- type: precision_at_10 |
|
value: 5.995 |
|
- type: precision_at_100 |
|
value: 1.058 |
|
- type: precision_at_1000 |
|
value: 0.14100000000000001 |
|
- type: precision_at_3 |
|
value: 12.894 |
|
- type: precision_at_5 |
|
value: 9.428 |
|
- type: recall_at_1 |
|
value: 17.264 |
|
- type: recall_at_10 |
|
value: 45.074 |
|
- type: recall_at_100 |
|
value: 71.817 |
|
- type: recall_at_1000 |
|
value: 89.846 |
|
- type: recall_at_3 |
|
value: 30.031000000000002 |
|
- type: recall_at_5 |
|
value: 36.233 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.668 |
|
- type: map_at_10 |
|
value: 40.382 |
|
- type: map_at_100 |
|
value: 41.836 |
|
- type: map_at_1000 |
|
value: 41.954 |
|
- type: map_at_3 |
|
value: 37.136 |
|
- type: map_at_5 |
|
value: 38.755 |
|
- type: mrr_at_1 |
|
value: 35.13 |
|
- type: mrr_at_10 |
|
value: 45.928999999999995 |
|
- type: mrr_at_100 |
|
value: 46.814 |
|
- type: mrr_at_1000 |
|
value: 46.854 |
|
- type: mrr_at_3 |
|
value: 43.423 |
|
- type: mrr_at_5 |
|
value: 44.79 |
|
- type: ndcg_at_1 |
|
value: 35.13 |
|
- type: ndcg_at_10 |
|
value: 46.81 |
|
- type: ndcg_at_100 |
|
value: 52.552 |
|
- type: ndcg_at_1000 |
|
value: 54.493 |
|
- type: ndcg_at_3 |
|
value: 41.732 |
|
- type: ndcg_at_5 |
|
value: 43.847 |
|
- type: precision_at_1 |
|
value: 35.13 |
|
- type: precision_at_10 |
|
value: 8.738999999999999 |
|
- type: precision_at_100 |
|
value: 1.373 |
|
- type: precision_at_1000 |
|
value: 0.174 |
|
- type: precision_at_3 |
|
value: 20.372 |
|
- type: precision_at_5 |
|
value: 14.302000000000001 |
|
- type: recall_at_1 |
|
value: 28.668 |
|
- type: recall_at_10 |
|
value: 60.038000000000004 |
|
- type: recall_at_100 |
|
value: 83.736 |
|
- type: recall_at_1000 |
|
value: 96.184 |
|
- type: recall_at_3 |
|
value: 45.647999999999996 |
|
- type: recall_at_5 |
|
value: 51.212 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.287 |
|
- type: map_at_10 |
|
value: 35.351 |
|
- type: map_at_100 |
|
value: 36.867 |
|
- type: map_at_1000 |
|
value: 36.973 |
|
- type: map_at_3 |
|
value: 32.176 |
|
- type: map_at_5 |
|
value: 33.894999999999996 |
|
- type: mrr_at_1 |
|
value: 31.735000000000003 |
|
- type: mrr_at_10 |
|
value: 40.832 |
|
- type: mrr_at_100 |
|
value: 41.812 |
|
- type: mrr_at_1000 |
|
value: 41.864000000000004 |
|
- type: mrr_at_3 |
|
value: 38.489000000000004 |
|
- type: mrr_at_5 |
|
value: 39.654 |
|
- type: ndcg_at_1 |
|
value: 31.735000000000003 |
|
- type: ndcg_at_10 |
|
value: 41.327999999999996 |
|
- type: ndcg_at_100 |
|
value: 47.565000000000005 |
|
- type: ndcg_at_1000 |
|
value: 49.708000000000006 |
|
- type: ndcg_at_3 |
|
value: 36.391 |
|
- type: ndcg_at_5 |
|
value: 38.489000000000004 |
|
- type: precision_at_1 |
|
value: 31.735000000000003 |
|
- type: precision_at_10 |
|
value: 7.7170000000000005 |
|
- type: precision_at_100 |
|
value: 1.2670000000000001 |
|
- type: precision_at_1000 |
|
value: 0.16199999999999998 |
|
- type: precision_at_3 |
|
value: 17.808 |
|
- type: precision_at_5 |
|
value: 12.534 |
|
- type: recall_at_1 |
|
value: 25.287 |
|
- type: recall_at_10 |
|
value: 53.735 |
|
- type: recall_at_100 |
|
value: 80.149 |
|
- type: recall_at_1000 |
|
value: 94.756 |
|
- type: recall_at_3 |
|
value: 39.475 |
|
- type: recall_at_5 |
|
value: 45.532000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.613 |
|
- type: map_at_10 |
|
value: 36.747416666666666 |
|
- type: map_at_100 |
|
value: 38.091416666666674 |
|
- type: map_at_1000 |
|
value: 38.2075 |
|
- type: map_at_3 |
|
value: 33.630833333333335 |
|
- type: map_at_5 |
|
value: 35.28225 |
|
- type: mrr_at_1 |
|
value: 31.654 |
|
- type: mrr_at_10 |
|
value: 40.94166666666666 |
|
- type: mrr_at_100 |
|
value: 41.85883333333334 |
|
- type: mrr_at_1000 |
|
value: 41.910666666666664 |
|
- type: mrr_at_3 |
|
value: 38.44458333333334 |
|
- type: mrr_at_5 |
|
value: 39.84525000000001 |
|
- type: ndcg_at_1 |
|
value: 31.654 |
|
- type: ndcg_at_10 |
|
value: 42.533 |
|
- type: ndcg_at_100 |
|
value: 48.09741666666667 |
|
- type: ndcg_at_1000 |
|
value: 50.170166666666674 |
|
- type: ndcg_at_3 |
|
value: 37.37858333333333 |
|
- type: ndcg_at_5 |
|
value: 39.666666666666664 |
|
- type: precision_at_1 |
|
value: 31.654 |
|
- type: precision_at_10 |
|
value: 7.649500000000001 |
|
- type: precision_at_100 |
|
value: 1.2425 |
|
- type: precision_at_1000 |
|
value: 0.16175 |
|
- type: precision_at_3 |
|
value: 17.49625 |
|
- type: precision_at_5 |
|
value: 12.410333333333332 |
|
- type: recall_at_1 |
|
value: 26.613 |
|
- type: recall_at_10 |
|
value: 55.33375 |
|
- type: recall_at_100 |
|
value: 79.52791666666667 |
|
- type: recall_at_1000 |
|
value: 93.73391666666667 |
|
- type: recall_at_3 |
|
value: 40.861333333333334 |
|
- type: recall_at_5 |
|
value: 46.84675 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.079 |
|
- type: map_at_10 |
|
value: 33.481 |
|
- type: map_at_100 |
|
value: 34.494 |
|
- type: map_at_1000 |
|
value: 34.589999999999996 |
|
- type: map_at_3 |
|
value: 31.165 |
|
- type: map_at_5 |
|
value: 32.482 |
|
- type: mrr_at_1 |
|
value: 29.293999999999997 |
|
- type: mrr_at_10 |
|
value: 36.303000000000004 |
|
- type: mrr_at_100 |
|
value: 37.183 |
|
- type: mrr_at_1000 |
|
value: 37.254 |
|
- type: mrr_at_3 |
|
value: 34.33 |
|
- type: mrr_at_5 |
|
value: 35.519 |
|
- type: ndcg_at_1 |
|
value: 29.293999999999997 |
|
- type: ndcg_at_10 |
|
value: 37.817 |
|
- type: ndcg_at_100 |
|
value: 42.91 |
|
- type: ndcg_at_1000 |
|
value: 45.342 |
|
- type: ndcg_at_3 |
|
value: 33.695 |
|
- type: ndcg_at_5 |
|
value: 35.747 |
|
- type: precision_at_1 |
|
value: 29.293999999999997 |
|
- type: precision_at_10 |
|
value: 5.951 |
|
- type: precision_at_100 |
|
value: 0.9400000000000001 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 14.519000000000002 |
|
- type: precision_at_5 |
|
value: 10.123 |
|
- type: recall_at_1 |
|
value: 26.079 |
|
- type: recall_at_10 |
|
value: 48.27 |
|
- type: recall_at_100 |
|
value: 71.64 |
|
- type: recall_at_1000 |
|
value: 89.775 |
|
- type: recall_at_3 |
|
value: 36.858000000000004 |
|
- type: recall_at_5 |
|
value: 42.013 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.17 |
|
- type: map_at_10 |
|
value: 26.483 |
|
- type: map_at_100 |
|
value: 27.732 |
|
- type: map_at_1000 |
|
value: 27.864 |
|
- type: map_at_3 |
|
value: 23.76 |
|
- type: map_at_5 |
|
value: 25.290000000000003 |
|
- type: mrr_at_1 |
|
value: 22.436 |
|
- type: mrr_at_10 |
|
value: 30.448999999999998 |
|
- type: mrr_at_100 |
|
value: 31.476 |
|
- type: mrr_at_1000 |
|
value: 31.548 |
|
- type: mrr_at_3 |
|
value: 28.051 |
|
- type: mrr_at_5 |
|
value: 29.421999999999997 |
|
- type: ndcg_at_1 |
|
value: 22.436 |
|
- type: ndcg_at_10 |
|
value: 31.662000000000003 |
|
- type: ndcg_at_100 |
|
value: 37.611 |
|
- type: ndcg_at_1000 |
|
value: 40.439 |
|
- type: ndcg_at_3 |
|
value: 26.939999999999998 |
|
- type: ndcg_at_5 |
|
value: 29.177999999999997 |
|
- type: precision_at_1 |
|
value: 22.436 |
|
- type: precision_at_10 |
|
value: 5.908 |
|
- type: precision_at_100 |
|
value: 1.056 |
|
- type: precision_at_1000 |
|
value: 0.149 |
|
- type: precision_at_3 |
|
value: 12.962000000000002 |
|
- type: precision_at_5 |
|
value: 9.476999999999999 |
|
- type: recall_at_1 |
|
value: 18.17 |
|
- type: recall_at_10 |
|
value: 43.219 |
|
- type: recall_at_100 |
|
value: 70.106 |
|
- type: recall_at_1000 |
|
value: 90.04100000000001 |
|
- type: recall_at_3 |
|
value: 30.023 |
|
- type: recall_at_5 |
|
value: 35.845 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.016999999999996 |
|
- type: map_at_10 |
|
value: 38.123000000000005 |
|
- type: map_at_100 |
|
value: 39.367000000000004 |
|
- type: map_at_1000 |
|
value: 39.467999999999996 |
|
- type: map_at_3 |
|
value: 34.836 |
|
- type: map_at_5 |
|
value: 36.661 |
|
- type: mrr_at_1 |
|
value: 33.116 |
|
- type: mrr_at_10 |
|
value: 42.211 |
|
- type: mrr_at_100 |
|
value: 43.118 |
|
- type: mrr_at_1000 |
|
value: 43.169000000000004 |
|
- type: mrr_at_3 |
|
value: 39.521 |
|
- type: mrr_at_5 |
|
value: 41.154 |
|
- type: ndcg_at_1 |
|
value: 33.116 |
|
- type: ndcg_at_10 |
|
value: 43.86 |
|
- type: ndcg_at_100 |
|
value: 49.486000000000004 |
|
- type: ndcg_at_1000 |
|
value: 51.487 |
|
- type: ndcg_at_3 |
|
value: 38.303 |
|
- type: ndcg_at_5 |
|
value: 40.927 |
|
- type: precision_at_1 |
|
value: 33.116 |
|
- type: precision_at_10 |
|
value: 7.649 |
|
- type: precision_at_100 |
|
value: 1.165 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 17.724 |
|
- type: precision_at_5 |
|
value: 12.668 |
|
- type: recall_at_1 |
|
value: 28.016999999999996 |
|
- type: recall_at_10 |
|
value: 57.032000000000004 |
|
- type: recall_at_100 |
|
value: 81.828 |
|
- type: recall_at_1000 |
|
value: 95.273 |
|
- type: recall_at_3 |
|
value: 41.733 |
|
- type: recall_at_5 |
|
value: 48.496 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.295 |
|
- type: map_at_10 |
|
value: 34.94 |
|
- type: map_at_100 |
|
value: 36.659000000000006 |
|
- type: map_at_1000 |
|
value: 36.902 |
|
- type: map_at_3 |
|
value: 31.562 |
|
- type: map_at_5 |
|
value: 33.28 |
|
- type: mrr_at_1 |
|
value: 29.644 |
|
- type: mrr_at_10 |
|
value: 39.467999999999996 |
|
- type: mrr_at_100 |
|
value: 40.561 |
|
- type: mrr_at_1000 |
|
value: 40.61 |
|
- type: mrr_at_3 |
|
value: 36.759 |
|
- type: mrr_at_5 |
|
value: 38.251000000000005 |
|
- type: ndcg_at_1 |
|
value: 29.644 |
|
- type: ndcg_at_10 |
|
value: 41.376000000000005 |
|
- type: ndcg_at_100 |
|
value: 47.701 |
|
- type: ndcg_at_1000 |
|
value: 49.925999999999995 |
|
- type: ndcg_at_3 |
|
value: 36.009 |
|
- type: ndcg_at_5 |
|
value: 38.23 |
|
- type: precision_at_1 |
|
value: 29.644 |
|
- type: precision_at_10 |
|
value: 8.182 |
|
- type: precision_at_100 |
|
value: 1.672 |
|
- type: precision_at_1000 |
|
value: 0.253 |
|
- type: precision_at_3 |
|
value: 17.325 |
|
- type: precision_at_5 |
|
value: 12.450999999999999 |
|
- type: recall_at_1 |
|
value: 24.295 |
|
- type: recall_at_10 |
|
value: 54.478 |
|
- type: recall_at_100 |
|
value: 81.85 |
|
- type: recall_at_1000 |
|
value: 95.395 |
|
- type: recall_at_3 |
|
value: 39.121 |
|
- type: recall_at_5 |
|
value: 45.465 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.476 |
|
- type: map_at_10 |
|
value: 28.274 |
|
- type: map_at_100 |
|
value: 29.509999999999998 |
|
- type: map_at_1000 |
|
value: 29.614 |
|
- type: map_at_3 |
|
value: 25.413000000000004 |
|
- type: map_at_5 |
|
value: 26.758 |
|
- type: mrr_at_1 |
|
value: 20.887 |
|
- type: mrr_at_10 |
|
value: 29.975 |
|
- type: mrr_at_100 |
|
value: 31.063000000000002 |
|
- type: mrr_at_1000 |
|
value: 31.14 |
|
- type: mrr_at_3 |
|
value: 27.326 |
|
- type: mrr_at_5 |
|
value: 28.666000000000004 |
|
- type: ndcg_at_1 |
|
value: 20.887 |
|
- type: ndcg_at_10 |
|
value: 33.456 |
|
- type: ndcg_at_100 |
|
value: 39.421 |
|
- type: ndcg_at_1000 |
|
value: 41.873 |
|
- type: ndcg_at_3 |
|
value: 27.755000000000003 |
|
- type: ndcg_at_5 |
|
value: 30.032999999999998 |
|
- type: precision_at_1 |
|
value: 20.887 |
|
- type: precision_at_10 |
|
value: 5.601 |
|
- type: precision_at_100 |
|
value: 0.915 |
|
- type: precision_at_1000 |
|
value: 0.125 |
|
- type: precision_at_3 |
|
value: 12.076 |
|
- type: precision_at_5 |
|
value: 8.613999999999999 |
|
- type: recall_at_1 |
|
value: 19.476 |
|
- type: recall_at_10 |
|
value: 47.772999999999996 |
|
- type: recall_at_100 |
|
value: 75.031 |
|
- type: recall_at_1000 |
|
value: 92.96 |
|
- type: recall_at_3 |
|
value: 32.221 |
|
- type: recall_at_5 |
|
value: 37.68 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.341999999999999 |
|
- type: map_at_10 |
|
value: 14.524000000000001 |
|
- type: map_at_100 |
|
value: 16.114 |
|
- type: map_at_1000 |
|
value: 16.301 |
|
- type: map_at_3 |
|
value: 11.904 |
|
- type: map_at_5 |
|
value: 13.175 |
|
- type: mrr_at_1 |
|
value: 18.892999999999997 |
|
- type: mrr_at_10 |
|
value: 29.185 |
|
- type: mrr_at_100 |
|
value: 30.368000000000002 |
|
- type: mrr_at_1000 |
|
value: 30.418 |
|
- type: mrr_at_3 |
|
value: 25.548 |
|
- type: mrr_at_5 |
|
value: 27.708 |
|
- type: ndcg_at_1 |
|
value: 18.892999999999997 |
|
- type: ndcg_at_10 |
|
value: 21.572 |
|
- type: ndcg_at_100 |
|
value: 28.51 |
|
- type: ndcg_at_1000 |
|
value: 32.204 |
|
- type: ndcg_at_3 |
|
value: 16.753 |
|
- type: ndcg_at_5 |
|
value: 18.5 |
|
- type: precision_at_1 |
|
value: 18.892999999999997 |
|
- type: precision_at_10 |
|
value: 6.997000000000001 |
|
- type: precision_at_100 |
|
value: 1.433 |
|
- type: precision_at_1000 |
|
value: 0.211 |
|
- type: precision_at_3 |
|
value: 12.53 |
|
- type: precision_at_5 |
|
value: 10.098 |
|
- type: recall_at_1 |
|
value: 8.341999999999999 |
|
- type: recall_at_10 |
|
value: 27.215 |
|
- type: recall_at_100 |
|
value: 51.534 |
|
- type: recall_at_1000 |
|
value: 72.655 |
|
- type: recall_at_3 |
|
value: 15.634 |
|
- type: recall_at_5 |
|
value: 20.227 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: f097057d03ed98220bc7309ddb10b71a54d667d6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.5920000000000005 |
|
- type: map_at_10 |
|
value: 15.42 |
|
- type: map_at_100 |
|
value: 21.269 |
|
- type: map_at_1000 |
|
value: 22.55 |
|
- type: map_at_3 |
|
value: 11.221 |
|
- type: map_at_5 |
|
value: 13.225999999999999 |
|
- type: mrr_at_1 |
|
value: 58.25 |
|
- type: mrr_at_10 |
|
value: 66.237 |
|
- type: mrr_at_100 |
|
value: 66.74799999999999 |
|
- type: mrr_at_1000 |
|
value: 66.762 |
|
- type: mrr_at_3 |
|
value: 64.167 |
|
- type: mrr_at_5 |
|
value: 65.229 |
|
- type: ndcg_at_1 |
|
value: 45.625 |
|
- type: ndcg_at_10 |
|
value: 33.355000000000004 |
|
- type: ndcg_at_100 |
|
value: 37.484 |
|
- type: ndcg_at_1000 |
|
value: 44.523 |
|
- type: ndcg_at_3 |
|
value: 37.879000000000005 |
|
- type: ndcg_at_5 |
|
value: 35.841 |
|
- type: precision_at_1 |
|
value: 58.25 |
|
- type: precision_at_10 |
|
value: 26.450000000000003 |
|
- type: precision_at_100 |
|
value: 8.290000000000001 |
|
- type: precision_at_1000 |
|
value: 1.744 |
|
- type: precision_at_3 |
|
value: 40.75 |
|
- type: precision_at_5 |
|
value: 35.0 |
|
- type: recall_at_1 |
|
value: 7.5920000000000005 |
|
- type: recall_at_10 |
|
value: 20.064 |
|
- type: recall_at_100 |
|
value: 43.187 |
|
- type: recall_at_1000 |
|
value: 66.154 |
|
- type: recall_at_3 |
|
value: 12.366000000000001 |
|
- type: recall_at_5 |
|
value: 15.631 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 829147f8f75a25f005913200eb5ed41fae320aa1 |
|
metrics: |
|
- type: accuracy |
|
value: 41.17 |
|
- type: f1 |
|
value: 36.961926373935974 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 37.361 |
|
- type: map_at_10 |
|
value: 49.407000000000004 |
|
- type: map_at_100 |
|
value: 50.11600000000001 |
|
- type: map_at_1000 |
|
value: 50.151999999999994 |
|
- type: map_at_3 |
|
value: 46.608 |
|
- type: map_at_5 |
|
value: 48.286 |
|
- type: mrr_at_1 |
|
value: 40.204 |
|
- type: mrr_at_10 |
|
value: 52.714000000000006 |
|
- type: mrr_at_100 |
|
value: 53.347 |
|
- type: mrr_at_1000 |
|
value: 53.373000000000005 |
|
- type: mrr_at_3 |
|
value: 49.935 |
|
- type: mrr_at_5 |
|
value: 51.626000000000005 |
|
- type: ndcg_at_1 |
|
value: 40.204 |
|
- type: ndcg_at_10 |
|
value: 55.905 |
|
- type: ndcg_at_100 |
|
value: 59.229 |
|
- type: ndcg_at_1000 |
|
value: 60.077000000000005 |
|
- type: ndcg_at_3 |
|
value: 50.367 |
|
- type: ndcg_at_5 |
|
value: 53.291999999999994 |
|
- type: precision_at_1 |
|
value: 40.204 |
|
- type: precision_at_10 |
|
value: 8.0 |
|
- type: precision_at_100 |
|
value: 0.979 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 20.997 |
|
- type: precision_at_5 |
|
value: 14.215 |
|
- type: recall_at_1 |
|
value: 37.361 |
|
- type: recall_at_10 |
|
value: 72.775 |
|
- type: recall_at_100 |
|
value: 87.883 |
|
- type: recall_at_1000 |
|
value: 94.204 |
|
- type: recall_at_3 |
|
value: 57.830000000000005 |
|
- type: recall_at_5 |
|
value: 64.888 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.257 |
|
- type: map_at_10 |
|
value: 29.694 |
|
- type: map_at_100 |
|
value: 31.593 |
|
- type: map_at_1000 |
|
value: 31.795 |
|
- type: map_at_3 |
|
value: 25.778000000000002 |
|
- type: map_at_5 |
|
value: 27.901999999999997 |
|
- type: mrr_at_1 |
|
value: 36.574 |
|
- type: mrr_at_10 |
|
value: 45.562000000000005 |
|
- type: mrr_at_100 |
|
value: 46.479 |
|
- type: mrr_at_1000 |
|
value: 46.52 |
|
- type: mrr_at_3 |
|
value: 43.184 |
|
- type: mrr_at_5 |
|
value: 44.558 |
|
- type: ndcg_at_1 |
|
value: 36.574 |
|
- type: ndcg_at_10 |
|
value: 37.274 |
|
- type: ndcg_at_100 |
|
value: 44.379000000000005 |
|
- type: ndcg_at_1000 |
|
value: 47.803000000000004 |
|
- type: ndcg_at_3 |
|
value: 33.999 |
|
- type: ndcg_at_5 |
|
value: 34.927 |
|
- type: precision_at_1 |
|
value: 36.574 |
|
- type: precision_at_10 |
|
value: 10.571 |
|
- type: precision_at_100 |
|
value: 1.779 |
|
- type: precision_at_1000 |
|
value: 0.23700000000000002 |
|
- type: precision_at_3 |
|
value: 22.942 |
|
- type: precision_at_5 |
|
value: 16.944 |
|
- type: recall_at_1 |
|
value: 18.257 |
|
- type: recall_at_10 |
|
value: 43.46 |
|
- type: recall_at_100 |
|
value: 70.017 |
|
- type: recall_at_1000 |
|
value: 90.838 |
|
- type: recall_at_3 |
|
value: 30.520999999999997 |
|
- type: recall_at_5 |
|
value: 35.977 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: 766870b35a1b9ca65e67a0d1913899973551fc6c |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.935000000000002 |
|
- type: map_at_10 |
|
value: 35.96 |
|
- type: map_at_100 |
|
value: 36.811 |
|
- type: map_at_1000 |
|
value: 36.894 |
|
- type: map_at_3 |
|
value: 33.479 |
|
- type: map_at_5 |
|
value: 34.93 |
|
- type: mrr_at_1 |
|
value: 51.870000000000005 |
|
- type: mrr_at_10 |
|
value: 59.671 |
|
- type: mrr_at_100 |
|
value: 60.153 |
|
- type: mrr_at_1000 |
|
value: 60.183 |
|
- type: mrr_at_3 |
|
value: 57.815000000000005 |
|
- type: mrr_at_5 |
|
value: 58.965999999999994 |
|
- type: ndcg_at_1 |
|
value: 51.870000000000005 |
|
- type: ndcg_at_10 |
|
value: 44.589 |
|
- type: ndcg_at_100 |
|
value: 48.113 |
|
- type: ndcg_at_1000 |
|
value: 49.962 |
|
- type: ndcg_at_3 |
|
value: 40.304 |
|
- type: ndcg_at_5 |
|
value: 42.543 |
|
- type: precision_at_1 |
|
value: 51.870000000000005 |
|
- type: precision_at_10 |
|
value: 9.454 |
|
- type: precision_at_100 |
|
value: 1.225 |
|
- type: precision_at_1000 |
|
value: 0.147 |
|
- type: precision_at_3 |
|
value: 25.131999999999998 |
|
- type: precision_at_5 |
|
value: 16.851 |
|
- type: recall_at_1 |
|
value: 25.935000000000002 |
|
- type: recall_at_10 |
|
value: 47.272 |
|
- type: recall_at_100 |
|
value: 61.229 |
|
- type: recall_at_1000 |
|
value: 73.55199999999999 |
|
- type: recall_at_3 |
|
value: 37.698 |
|
- type: recall_at_5 |
|
value: 42.126999999999995 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 |
|
metrics: |
|
- type: accuracy |
|
value: 59.76079999999999 |
|
- type: ap |
|
value: 55.90381572041755 |
|
- type: f1 |
|
value: 58.99832553463791 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 |
|
metrics: |
|
- type: map_at_1 |
|
value: 20.666999999999998 |
|
- type: map_at_10 |
|
value: 32.425 |
|
- type: map_at_100 |
|
value: 33.586 |
|
- type: map_at_1000 |
|
value: 33.643 |
|
- type: map_at_3 |
|
value: 28.836000000000002 |
|
- type: map_at_5 |
|
value: 30.847 |
|
- type: mrr_at_1 |
|
value: 21.275 |
|
- type: mrr_at_10 |
|
value: 33.062999999999995 |
|
- type: mrr_at_100 |
|
value: 34.168 |
|
- type: mrr_at_1000 |
|
value: 34.217999999999996 |
|
- type: mrr_at_3 |
|
value: 29.491 |
|
- type: mrr_at_5 |
|
value: 31.502999999999997 |
|
- type: ndcg_at_1 |
|
value: 21.246000000000002 |
|
- type: ndcg_at_10 |
|
value: 39.034 |
|
- type: ndcg_at_100 |
|
value: 44.768 |
|
- type: ndcg_at_1000 |
|
value: 46.2 |
|
- type: ndcg_at_3 |
|
value: 31.652 |
|
- type: ndcg_at_5 |
|
value: 35.257 |
|
- type: precision_at_1 |
|
value: 21.246000000000002 |
|
- type: precision_at_10 |
|
value: 6.196 |
|
- type: precision_at_100 |
|
value: 0.909 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 13.547999999999998 |
|
- type: precision_at_5 |
|
value: 9.946000000000002 |
|
- type: recall_at_1 |
|
value: 20.666999999999998 |
|
- type: recall_at_10 |
|
value: 59.321999999999996 |
|
- type: recall_at_100 |
|
value: 86.158 |
|
- type: recall_at_1000 |
|
value: 97.154 |
|
- type: recall_at_3 |
|
value: 39.160000000000004 |
|
- type: recall_at_5 |
|
value: 47.82 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 91.89922480620154 |
|
- type: f1 |
|
value: 91.66762682851963 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
config: de |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 72.03719357565511 |
|
- type: f1 |
|
value: 68.75742308679864 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 72.98532354903269 |
|
- type: f1 |
|
value: 71.33173021994274 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
config: fr |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 75.59348575007829 |
|
- type: f1 |
|
value: 73.1511918522243 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
config: hi |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 40.36213696665471 |
|
- type: f1 |
|
value: 37.865703085609475 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
config: th |
|
split: test |
|
revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 |
|
metrics: |
|
- type: accuracy |
|
value: 17.099457504520796 |
|
- type: f1 |
|
value: 12.86835498185132 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 62.83629730962153 |
|
- type: f1 |
|
value: 44.241027031016735 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 43.412228796844175 |
|
- type: f1 |
|
value: 25.96122949091921 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 41.8812541694463 |
|
- type: f1 |
|
value: 27.93481154758236 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 38.93830253679925 |
|
- type: f1 |
|
value: 25.820783392796052 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 17.7518823951237 |
|
- type: f1 |
|
value: 11.681226129204576 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: 6299947a7777084cc2d4b64235bf7190381ce755 |
|
metrics: |
|
- type: accuracy |
|
value: 5.631103074141048 |
|
- type: f1 |
|
value: 2.046543337618445 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
config: af |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 38.94082044384667 |
|
- type: f1 |
|
value: 36.222023448848596 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
config: am |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 2.451244115669133 |
|
- type: f1 |
|
value: 1.1859369824825732 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 20.938130464021523 |
|
- type: f1 |
|
value: 17.984223607695032 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
config: az |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 34.25016812373907 |
|
- type: f1 |
|
value: 33.954933856088616 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 13.665097511768659 |
|
- type: f1 |
|
value: 12.091606412618153 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 35.7128446536651 |
|
- type: f1 |
|
value: 33.62071051640523 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
config: da |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 44.425016812373904 |
|
- type: f1 |
|
value: 41.20770166767181 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 44.1661062542031 |
|
- type: f1 |
|
value: 40.374580049860995 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
config: el |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 28.698722259583054 |
|
- type: f1 |
|
value: 24.131330009557754 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 67.14862138533961 |
|
- type: f1 |
|
value: 65.29267177342918 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 40.907868190988566 |
|
- type: f1 |
|
value: 39.705805513162154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 23.517148621385342 |
|
- type: f1 |
|
value: 20.450403227141454 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 39.27370544720915 |
|
- type: f1 |
|
value: 36.44557663703388 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 44.81506388702085 |
|
- type: f1 |
|
value: 42.61335088326293 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
config: he |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 23.648285137861468 |
|
- type: f1 |
|
value: 19.948568467541378 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 17.97579018157364 |
|
- type: f1 |
|
value: 16.06739661356912 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 37.995965030262276 |
|
- type: f1 |
|
value: 35.26841971527663 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 8.691997310020176 |
|
- type: f1 |
|
value: 7.237344584036491 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
config: id |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 39.66039004707465 |
|
- type: f1 |
|
value: 38.775085127634476 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
config: is |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 35.141223940820446 |
|
- type: f1 |
|
value: 33.61281534585094 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
config: it |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 43.17081371889711 |
|
- type: f1 |
|
value: 41.80158989235553 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 30.944855413584392 |
|
- type: f1 |
|
value: 27.785702058036733 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 36.69468728984533 |
|
- type: f1 |
|
value: 34.21258336813279 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 9.169468728984533 |
|
- type: f1 |
|
value: 6.904570655222885 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
config: km |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 4.986550100874243 |
|
- type: f1 |
|
value: 1.7161855654054863 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 3.0766644250168125 |
|
- type: f1 |
|
value: 1.9577724201468871 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 19.966375252185607 |
|
- type: f1 |
|
value: 16.545470254940454 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 38.61129791526564 |
|
- type: f1 |
|
value: 37.447802930149614 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 2.85137861466039 |
|
- type: f1 |
|
value: 0.8642500845287098 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 23.24815063887021 |
|
- type: f1 |
|
value: 22.162182623622098 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 36.21385339609952 |
|
- type: f1 |
|
value: 33.62879988681565 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
config: my |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 4.381304640215198 |
|
- type: f1 |
|
value: 1.4197071894925672 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 41.91324815063887 |
|
- type: f1 |
|
value: 38.890562616282196 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 41.85272360457296 |
|
- type: f1 |
|
value: 38.79874724974811 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 37.632817753866846 |
|
- type: f1 |
|
value: 34.5071421221765 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 45.12104909213182 |
|
- type: f1 |
|
value: 43.32946794837761 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 41.71486213853396 |
|
- type: f1 |
|
value: 39.500043810450016 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 26.3315400134499 |
|
- type: f1 |
|
value: 24.213252556865477 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 38.52051109616678 |
|
- type: f1 |
|
value: 37.07900132022834 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 41.62071284465367 |
|
- type: f1 |
|
value: 39.89522566274897 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 40.416946872898464 |
|
- type: f1 |
|
value: 38.43895125974106 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 35.27908540685945 |
|
- type: f1 |
|
value: 33.8079098469717 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 13.096839273705447 |
|
- type: f1 |
|
value: 10.24267220963294 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
config: te |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 2.5622057834566236 |
|
- type: f1 |
|
value: 1.0615210594147622 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 10.537995965030262 |
|
- type: f1 |
|
value: 6.1708791409070995 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 38.56086079354405 |
|
- type: f1 |
|
value: 35.015690080151465 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 35.897780766644246 |
|
- type: f1 |
|
value: 33.90602650751521 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 16.1768661735037 |
|
- type: f1 |
|
value: 15.713925259255651 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 37.37726967047747 |
|
- type: f1 |
|
value: 35.652051460172906 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 23.74243443174176 |
|
- type: f1 |
|
value: 19.255371431159425 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea |
|
metrics: |
|
- type: accuracy |
|
value: 22.387357094821787 |
|
- type: f1 |
|
value: 19.094067620374382 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
config: af |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 45.709482178883654 |
|
- type: f1 |
|
value: 43.61228850391169 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
config: am |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 7.407531943510423 |
|
- type: f1 |
|
value: 3.8875366763112984 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 27.61936785474109 |
|
- type: f1 |
|
value: 25.329931057423753 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
config: az |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 39.57969065232011 |
|
- type: f1 |
|
value: 37.39258432617311 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 18.9778076664425 |
|
- type: f1 |
|
value: 17.620144033142864 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 41.40215198386012 |
|
- type: f1 |
|
value: 38.06372767307641 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
config: da |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 49.46872898453262 |
|
- type: f1 |
|
value: 46.90610579296604 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
config: de |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.07128446536652 |
|
- type: f1 |
|
value: 49.46913533778989 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
config: el |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 35.50773369199731 |
|
- type: f1 |
|
value: 31.66524248503607 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 74.57632817753867 |
|
- type: f1 |
|
value: 73.95638454943459 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.743106926698054 |
|
- type: f1 |
|
value: 48.200939058933415 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 29.004707464694015 |
|
- type: f1 |
|
value: 25.784529950699753 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 45.80026899798252 |
|
- type: f1 |
|
value: 41.79459465764992 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 53.7626092804304 |
|
- type: f1 |
|
value: 51.70423088264189 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
config: he |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 25.682582380632148 |
|
- type: f1 |
|
value: 23.16790314457902 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 23.022864828513782 |
|
- type: f1 |
|
value: 21.459384490296486 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.08540685944856 |
|
- type: f1 |
|
value: 40.99340260145573 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 14.83187626092804 |
|
- type: f1 |
|
value: 12.970096153546534 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
config: id |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.34767989240081 |
|
- type: f1 |
|
value: 42.21539278376439 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
config: is |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 43.08002689979825 |
|
- type: f1 |
|
value: 40.01184510787284 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
config: it |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 51.71486213853396 |
|
- type: f1 |
|
value: 48.49232807960585 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 36.748486886348346 |
|
- type: f1 |
|
value: 35.46615048175051 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.56624075319435 |
|
- type: f1 |
|
value: 40.90741041356553 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 14.83523873570948 |
|
- type: f1 |
|
value: 12.296442463483718 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
config: km |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 9.754539340954944 |
|
- type: f1 |
|
value: 4.250353307219123 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 8.315400134498994 |
|
- type: f1 |
|
value: 5.388118548783403 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 25.719569603227978 |
|
- type: f1 |
|
value: 23.20523005165416 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 42.74714189643578 |
|
- type: f1 |
|
value: 40.61202626722604 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 7.252858103564222 |
|
- type: f1 |
|
value: 3.448646759763805 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 29.034969737726968 |
|
- type: f1 |
|
value: 26.63495414552696 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.64694014794889 |
|
- type: f1 |
|
value: 40.192107405242155 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
config: my |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 10.067249495628783 |
|
- type: f1 |
|
value: 5.764723442216905 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 47.357094821788834 |
|
- type: f1 |
|
value: 44.596914417443266 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 49.15265635507734 |
|
- type: f1 |
|
value: 46.15820727175712 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.72091459314056 |
|
- type: f1 |
|
value: 42.88213581673335 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.99932750504372 |
|
- type: f1 |
|
value: 51.01176637403334 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 49.97310020174849 |
|
- type: f1 |
|
value: 47.22673671303613 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 28.74915938130464 |
|
- type: f1 |
|
value: 27.25888866616121 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 42.2595830531271 |
|
- type: f1 |
|
value: 41.261927156734785 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 49.13584398117014 |
|
- type: f1 |
|
value: 47.08320600523055 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 46.82582380632145 |
|
- type: f1 |
|
value: 43.40423470084757 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 43.18426361802287 |
|
- type: f1 |
|
value: 39.815480841992084 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 19.3813046402152 |
|
- type: f1 |
|
value: 16.699966519668614 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
config: te |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 7.737054472091459 |
|
- type: f1 |
|
value: 3.8594459698077364 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
config: th |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 18.31540013449899 |
|
- type: f1 |
|
value: 13.491482848005418 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 48.305312710154666 |
|
- type: f1 |
|
value: 45.48790821413181 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 41.792199058507066 |
|
- type: f1 |
|
value: 41.24552662271258 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 24.462004034969738 |
|
- type: f1 |
|
value: 22.270575649981797 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 40.94149293880296 |
|
- type: f1 |
|
value: 39.08540872012287 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 33.17753866845998 |
|
- type: f1 |
|
value: 31.64001182395128 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 31.15669132481506 |
|
- type: f1 |
|
value: 30.89137619124565 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: dcefc037ef84348e49b0d29109e891c01067226b |
|
metrics: |
|
- type: v_measure |
|
value: 34.24621118290122 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc |
|
metrics: |
|
- type: v_measure |
|
value: 32.24202424478886 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 31.024522945679166 |
|
- type: mrr |
|
value: 32.018722362966635 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.156000000000001 |
|
- type: map_at_10 |
|
value: 11.551 |
|
- type: map_at_100 |
|
value: 14.938 |
|
- type: map_at_1000 |
|
value: 16.366 |
|
- type: map_at_3 |
|
value: 8.118 |
|
- type: map_at_5 |
|
value: 9.918000000000001 |
|
- type: mrr_at_1 |
|
value: 42.415000000000006 |
|
- type: mrr_at_10 |
|
value: 51.571999999999996 |
|
- type: mrr_at_100 |
|
value: 52.126 |
|
- type: mrr_at_1000 |
|
value: 52.171 |
|
- type: mrr_at_3 |
|
value: 49.02 |
|
- type: mrr_at_5 |
|
value: 50.50599999999999 |
|
- type: ndcg_at_1 |
|
value: 39.783 |
|
- type: ndcg_at_10 |
|
value: 32.25 |
|
- type: ndcg_at_100 |
|
value: 30.089 |
|
- type: ndcg_at_1000 |
|
value: 38.86 |
|
- type: ndcg_at_3 |
|
value: 36.962 |
|
- type: ndcg_at_5 |
|
value: 35.292 |
|
- type: precision_at_1 |
|
value: 41.796 |
|
- type: precision_at_10 |
|
value: 24.272 |
|
- type: precision_at_100 |
|
value: 7.963000000000001 |
|
- type: precision_at_1000 |
|
value: 2.07 |
|
- type: precision_at_3 |
|
value: 35.397 |
|
- type: precision_at_5 |
|
value: 31.022 |
|
- type: recall_at_1 |
|
value: 5.156000000000001 |
|
- type: recall_at_10 |
|
value: 15.468000000000002 |
|
- type: recall_at_100 |
|
value: 31.049 |
|
- type: recall_at_1000 |
|
value: 63.148 |
|
- type: recall_at_3 |
|
value: 9.078999999999999 |
|
- type: recall_at_5 |
|
value: 12.275 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.672 |
|
- type: map_at_10 |
|
value: 38.452 |
|
- type: map_at_100 |
|
value: 39.705 |
|
- type: map_at_1000 |
|
value: 39.742 |
|
- type: map_at_3 |
|
value: 33.806999999999995 |
|
- type: map_at_5 |
|
value: 36.576 |
|
- type: mrr_at_1 |
|
value: 26.854 |
|
- type: mrr_at_10 |
|
value: 40.822 |
|
- type: mrr_at_100 |
|
value: 41.801 |
|
- type: mrr_at_1000 |
|
value: 41.827999999999996 |
|
- type: mrr_at_3 |
|
value: 36.824 |
|
- type: mrr_at_5 |
|
value: 39.312000000000005 |
|
- type: ndcg_at_1 |
|
value: 26.854 |
|
- type: ndcg_at_10 |
|
value: 46.469 |
|
- type: ndcg_at_100 |
|
value: 51.756 |
|
- type: ndcg_at_1000 |
|
value: 52.601 |
|
- type: ndcg_at_3 |
|
value: 37.623 |
|
- type: ndcg_at_5 |
|
value: 42.324 |
|
- type: precision_at_1 |
|
value: 26.854 |
|
- type: precision_at_10 |
|
value: 8.189 |
|
- type: precision_at_100 |
|
value: 1.11 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 17.718999999999998 |
|
- type: precision_at_5 |
|
value: 13.291 |
|
- type: recall_at_1 |
|
value: 23.672 |
|
- type: recall_at_10 |
|
value: 68.639 |
|
- type: recall_at_100 |
|
value: 91.546 |
|
- type: recall_at_1000 |
|
value: 97.794 |
|
- type: recall_at_3 |
|
value: 45.643 |
|
- type: recall_at_5 |
|
value: 56.523 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.667 |
|
- type: map_at_10 |
|
value: 83.83500000000001 |
|
- type: map_at_100 |
|
value: 84.479 |
|
- type: map_at_1000 |
|
value: 84.494 |
|
- type: map_at_3 |
|
value: 80.759 |
|
- type: map_at_5 |
|
value: 82.657 |
|
- type: mrr_at_1 |
|
value: 80.46 |
|
- type: mrr_at_10 |
|
value: 86.83800000000001 |
|
- type: mrr_at_100 |
|
value: 86.944 |
|
- type: mrr_at_1000 |
|
value: 86.945 |
|
- type: mrr_at_3 |
|
value: 85.815 |
|
- type: mrr_at_5 |
|
value: 86.508 |
|
- type: ndcg_at_1 |
|
value: 80.46 |
|
- type: ndcg_at_10 |
|
value: 87.752 |
|
- type: ndcg_at_100 |
|
value: 88.973 |
|
- type: ndcg_at_1000 |
|
value: 89.072 |
|
- type: ndcg_at_3 |
|
value: 84.735 |
|
- type: ndcg_at_5 |
|
value: 86.371 |
|
- type: precision_at_1 |
|
value: 80.46 |
|
- type: precision_at_10 |
|
value: 13.452 |
|
- type: precision_at_100 |
|
value: 1.532 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.187 |
|
- type: precision_at_5 |
|
value: 24.5 |
|
- type: recall_at_1 |
|
value: 69.667 |
|
- type: recall_at_10 |
|
value: 95.329 |
|
- type: recall_at_100 |
|
value: 99.52 |
|
- type: recall_at_1000 |
|
value: 99.991 |
|
- type: recall_at_3 |
|
value: 86.696 |
|
- type: recall_at_5 |
|
value: 91.346 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: b2805658ae38990172679479369a78b86de8c390 |
|
metrics: |
|
- type: v_measure |
|
value: 51.177545122684634 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 |
|
metrics: |
|
- type: v_measure |
|
value: 54.804652123126985 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.162 |
|
- type: map_at_10 |
|
value: 13.168 |
|
- type: map_at_100 |
|
value: 15.766 |
|
- type: map_at_1000 |
|
value: 16.136 |
|
- type: map_at_3 |
|
value: 9.180000000000001 |
|
- type: map_at_5 |
|
value: 11.205 |
|
- type: mrr_at_1 |
|
value: 25.5 |
|
- type: mrr_at_10 |
|
value: 36.617 |
|
- type: mrr_at_100 |
|
value: 37.814 |
|
- type: mrr_at_1000 |
|
value: 37.86 |
|
- type: mrr_at_3 |
|
value: 33.15 |
|
- type: mrr_at_5 |
|
value: 35.29 |
|
- type: ndcg_at_1 |
|
value: 25.5 |
|
- type: ndcg_at_10 |
|
value: 21.818 |
|
- type: ndcg_at_100 |
|
value: 31.302999999999997 |
|
- type: ndcg_at_1000 |
|
value: 37.175000000000004 |
|
- type: ndcg_at_3 |
|
value: 20.358999999999998 |
|
- type: ndcg_at_5 |
|
value: 18.169 |
|
- type: precision_at_1 |
|
value: 25.5 |
|
- type: precision_at_10 |
|
value: 11.32 |
|
- type: precision_at_100 |
|
value: 2.495 |
|
- type: precision_at_1000 |
|
value: 0.38899999999999996 |
|
- type: precision_at_3 |
|
value: 18.833 |
|
- type: precision_at_5 |
|
value: 16.06 |
|
- type: recall_at_1 |
|
value: 5.162 |
|
- type: recall_at_10 |
|
value: 22.932 |
|
- type: recall_at_100 |
|
value: 50.598 |
|
- type: recall_at_1000 |
|
value: 79.053 |
|
- type: recall_at_3 |
|
value: 11.442 |
|
- type: recall_at_5 |
|
value: 16.272000000000002 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.73414727754201 |
|
- type: cos_sim_spearman |
|
value: 79.3180820145488 |
|
- type: euclidean_pearson |
|
value: 81.33251162244008 |
|
- type: euclidean_spearman |
|
value: 79.31808410123591 |
|
- type: manhattan_pearson |
|
value: 81.24535628962194 |
|
- type: manhattan_spearman |
|
value: 79.18643136990889 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.89241604274538 |
|
- type: cos_sim_spearman |
|
value: 73.08329002776462 |
|
- type: euclidean_pearson |
|
value: 78.75856902522398 |
|
- type: euclidean_spearman |
|
value: 73.0808569122323 |
|
- type: manhattan_pearson |
|
value: 78.81165127939924 |
|
- type: manhattan_spearman |
|
value: 73.13358160467396 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.65439991719452 |
|
- type: cos_sim_spearman |
|
value: 82.13398891011764 |
|
- type: euclidean_pearson |
|
value: 81.63807492339613 |
|
- type: euclidean_spearman |
|
value: 82.13398891011764 |
|
- type: manhattan_pearson |
|
value: 81.5983078333819 |
|
- type: manhattan_spearman |
|
value: 82.11893098949203 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.66945263546415 |
|
- type: cos_sim_spearman |
|
value: 76.7342099954029 |
|
- type: euclidean_pearson |
|
value: 79.98454905286438 |
|
- type: euclidean_spearman |
|
value: 76.73420731947648 |
|
- type: manhattan_pearson |
|
value: 79.98121513026915 |
|
- type: manhattan_spearman |
|
value: 76.74818574618494 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.80085528616004 |
|
- type: cos_sim_spearman |
|
value: 85.57752600637704 |
|
- type: euclidean_pearson |
|
value: 84.88803602633503 |
|
- type: euclidean_spearman |
|
value: 85.57753174543699 |
|
- type: manhattan_pearson |
|
value: 84.77107707460819 |
|
- type: manhattan_spearman |
|
value: 85.4531691739887 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.32666585707851 |
|
- type: cos_sim_spearman |
|
value: 80.22692417222228 |
|
- type: euclidean_pearson |
|
value: 79.847799005588 |
|
- type: euclidean_spearman |
|
value: 80.22692417222228 |
|
- type: manhattan_pearson |
|
value: 79.86640649752613 |
|
- type: manhattan_spearman |
|
value: 80.25939898948658 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.97351108396674 |
|
- type: cos_sim_spearman |
|
value: 43.373159642451846 |
|
- type: euclidean_pearson |
|
value: 42.343251342924724 |
|
- type: euclidean_spearman |
|
value: 43.37383732365708 |
|
- type: manhattan_pearson |
|
value: 42.21420013714062 |
|
- type: manhattan_spearman |
|
value: 43.27093471564943 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.25766812232355 |
|
- type: cos_sim_spearman |
|
value: 58.70907752953121 |
|
- type: euclidean_pearson |
|
value: 57.74925638384565 |
|
- type: euclidean_spearman |
|
value: 58.70907752953121 |
|
- type: manhattan_pearson |
|
value: 57.53107164585081 |
|
- type: manhattan_spearman |
|
value: 58.18399071690873 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 2.000902150291317 |
|
- type: cos_sim_spearman |
|
value: 0.5442319876381565 |
|
- type: euclidean_pearson |
|
value: 2.0061692624223886 |
|
- type: euclidean_spearman |
|
value: 0.5442319876381565 |
|
- type: manhattan_pearson |
|
value: 1.6005243901065973 |
|
- type: manhattan_spearman |
|
value: 0.8261501538578374 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.103076250241756 |
|
- type: cos_sim_spearman |
|
value: 27.538399556865983 |
|
- type: euclidean_pearson |
|
value: 31.299966953719917 |
|
- type: euclidean_spearman |
|
value: 27.538399556865983 |
|
- type: manhattan_pearson |
|
value: 29.252983940152795 |
|
- type: manhattan_spearman |
|
value: 24.545142053308506 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.92662843843466 |
|
- type: cos_sim_spearman |
|
value: 88.6282754793921 |
|
- type: euclidean_pearson |
|
value: 88.9663425476392 |
|
- type: euclidean_spearman |
|
value: 88.6282754793921 |
|
- type: manhattan_pearson |
|
value: 89.04213757202741 |
|
- type: manhattan_spearman |
|
value: 88.8029452722001 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 6.699439791440673 |
|
- type: cos_sim_spearman |
|
value: 0.42741621491041054 |
|
- type: euclidean_pearson |
|
value: 7.0939749740816485 |
|
- type: euclidean_spearman |
|
value: 0.42741621491041054 |
|
- type: manhattan_pearson |
|
value: 3.7604205840813005 |
|
- type: manhattan_spearman |
|
value: -1.7995925853478083 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 22.332768127048812 |
|
- type: cos_sim_spearman |
|
value: 22.011862055263386 |
|
- type: euclidean_pearson |
|
value: 22.275743114886957 |
|
- type: euclidean_spearman |
|
value: 22.011862055263386 |
|
- type: manhattan_pearson |
|
value: 21.382471306976754 |
|
- type: manhattan_spearman |
|
value: 20.5220742340821 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.59529102081041 |
|
- type: cos_sim_spearman |
|
value: 78.36515013988296 |
|
- type: euclidean_pearson |
|
value: 79.6578967101581 |
|
- type: euclidean_spearman |
|
value: 78.36388790924713 |
|
- type: manhattan_pearson |
|
value: 79.54080618487365 |
|
- type: manhattan_spearman |
|
value: 78.03366107978795 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 34.19498070710533 |
|
- type: cos_sim_spearman |
|
value: 30.702559767030923 |
|
- type: euclidean_pearson |
|
value: 34.28061977250095 |
|
- type: euclidean_spearman |
|
value: 30.702559767030923 |
|
- type: manhattan_pearson |
|
value: 34.8122111793038 |
|
- type: manhattan_spearman |
|
value: 31.40796587790667 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 25.84186641167081 |
|
- type: cos_sim_spearman |
|
value: 24.28452119168039 |
|
- type: euclidean_pearson |
|
value: 25.866557000478302 |
|
- type: euclidean_spearman |
|
value: 24.28452119168039 |
|
- type: manhattan_pearson |
|
value: 24.273876016721925 |
|
- type: manhattan_spearman |
|
value: 23.66844883927423 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.68262883322153 |
|
- type: cos_sim_spearman |
|
value: 24.508086225784982 |
|
- type: euclidean_pearson |
|
value: 32.07775246994894 |
|
- type: euclidean_spearman |
|
value: 24.508086225784982 |
|
- type: manhattan_pearson |
|
value: 33.20196765495327 |
|
- type: manhattan_spearman |
|
value: 27.383641505403627 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.82398288868168 |
|
- type: cos_sim_spearman |
|
value: 65.6697261994716 |
|
- type: euclidean_pearson |
|
value: 66.84746542331361 |
|
- type: euclidean_spearman |
|
value: 65.6697261994716 |
|
- type: manhattan_pearson |
|
value: 66.89947196080837 |
|
- type: manhattan_spearman |
|
value: 65.61734245758937 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 18.956935297479266 |
|
- type: cos_sim_spearman |
|
value: 22.525438836468805 |
|
- type: euclidean_pearson |
|
value: 13.676185827963197 |
|
- type: euclidean_spearman |
|
value: 22.525438836468805 |
|
- type: manhattan_pearson |
|
value: 13.749488574260106 |
|
- type: manhattan_spearman |
|
value: 22.49725541226794 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 43.159634114474954 |
|
- type: cos_sim_spearman |
|
value: 43.97530387822291 |
|
- type: euclidean_pearson |
|
value: 42.45018759035119 |
|
- type: euclidean_spearman |
|
value: 43.97530387822291 |
|
- type: manhattan_pearson |
|
value: 43.88212906018782 |
|
- type: manhattan_spearman |
|
value: 44.2344991447187 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 2.9506287366804567 |
|
- type: cos_sim_spearman |
|
value: 19.21860340477442 |
|
- type: euclidean_pearson |
|
value: 6.306031200912426 |
|
- type: euclidean_spearman |
|
value: 19.21860340477442 |
|
- type: manhattan_pearson |
|
value: 5.968058806485322 |
|
- type: manhattan_spearman |
|
value: 18.496966556101356 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 17.494702940326327 |
|
- type: cos_sim_spearman |
|
value: 21.600665598855933 |
|
- type: euclidean_pearson |
|
value: 19.949878763475876 |
|
- type: euclidean_spearman |
|
value: 21.600665598855933 |
|
- type: manhattan_pearson |
|
value: 20.562737979747386 |
|
- type: manhattan_spearman |
|
value: 21.548415116687096 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 21.455304899947475 |
|
- type: cos_sim_spearman |
|
value: 17.54247841644246 |
|
- type: euclidean_pearson |
|
value: 19.954769470444862 |
|
- type: euclidean_spearman |
|
value: 17.54247841644246 |
|
- type: manhattan_pearson |
|
value: 20.491628523649304 |
|
- type: manhattan_spearman |
|
value: 17.984509706975498 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 5.725870260172754 |
|
- type: cos_sim_spearman |
|
value: 11.187514830423046 |
|
- type: euclidean_pearson |
|
value: 5.917124931676964 |
|
- type: euclidean_spearman |
|
value: 11.187514830423046 |
|
- type: manhattan_pearson |
|
value: 6.374841892742465 |
|
- type: manhattan_spearman |
|
value: 10.769670996439327 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 23.644675903928903 |
|
- type: cos_sim_spearman |
|
value: 33.1476054705555 |
|
- type: euclidean_pearson |
|
value: 27.486723401317015 |
|
- type: euclidean_spearman |
|
value: 33.14559867176513 |
|
- type: manhattan_pearson |
|
value: 28.905530853992335 |
|
- type: manhattan_spearman |
|
value: 32.97179552695711 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.19096417445061 |
|
- type: cos_sim_spearman |
|
value: 69.51402658537921 |
|
- type: euclidean_pearson |
|
value: 65.89836450895854 |
|
- type: euclidean_spearman |
|
value: 69.51402658537921 |
|
- type: manhattan_pearson |
|
value: 65.95918282706997 |
|
- type: manhattan_spearman |
|
value: 69.66631782067878 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 47.02727261965111 |
|
- type: cos_sim_spearman |
|
value: 42.85739641224728 |
|
- type: euclidean_pearson |
|
value: 47.55857919944314 |
|
- type: euclidean_spearman |
|
value: 42.85739641224728 |
|
- type: manhattan_pearson |
|
value: 50.24947623020984 |
|
- type: manhattan_spearman |
|
value: 44.34581665268886 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.54253509229287 |
|
- type: cos_sim_spearman |
|
value: 53.98864875959218 |
|
- type: euclidean_pearson |
|
value: 52.771474843725464 |
|
- type: euclidean_spearman |
|
value: 53.98864875959218 |
|
- type: manhattan_pearson |
|
value: 53.39728391060008 |
|
- type: manhattan_spearman |
|
value: 54.65413858996554 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 48.017241684543656 |
|
- type: cos_sim_spearman |
|
value: 47.47536430344332 |
|
- type: euclidean_pearson |
|
value: 46.94098755337956 |
|
- type: euclidean_spearman |
|
value: 47.47536430344332 |
|
- type: manhattan_pearson |
|
value: 47.27489495136295 |
|
- type: manhattan_spearman |
|
value: 47.75408075281176 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 43.16723254329198 |
|
- type: cos_sim_spearman |
|
value: 42.6695846628273 |
|
- type: euclidean_pearson |
|
value: 43.37634781317223 |
|
- type: euclidean_spearman |
|
value: 42.6695846628273 |
|
- type: manhattan_pearson |
|
value: 46.43632735525556 |
|
- type: manhattan_spearman |
|
value: 44.399080708250175 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 42.614472380988 |
|
- type: cos_sim_spearman |
|
value: 44.386615916921755 |
|
- type: euclidean_pearson |
|
value: 42.602921485579536 |
|
- type: euclidean_spearman |
|
value: 44.386615916921755 |
|
- type: manhattan_pearson |
|
value: 39.57742966805997 |
|
- type: manhattan_spearman |
|
value: 41.12937281700849 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 41.19025498086497 |
|
- type: cos_sim_spearman |
|
value: 40.70511339346037 |
|
- type: euclidean_pearson |
|
value: 41.757361379987536 |
|
- type: euclidean_spearman |
|
value: 40.70511339346037 |
|
- type: manhattan_pearson |
|
value: 42.12654868854391 |
|
- type: manhattan_spearman |
|
value: 40.16977290096036 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 42.58930629526249 |
|
- type: cos_sim_spearman |
|
value: 43.51970789091437 |
|
- type: euclidean_pearson |
|
value: 42.79780567751299 |
|
- type: euclidean_spearman |
|
value: 43.51970789091437 |
|
- type: manhattan_pearson |
|
value: 43.11190678703615 |
|
- type: manhattan_spearman |
|
value: 43.921331076552214 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 9.14354524166508 |
|
- type: cos_sim_spearman |
|
value: 1.632087485480262 |
|
- type: euclidean_pearson |
|
value: 9.808059926397586 |
|
- type: euclidean_spearman |
|
value: 1.632087485480262 |
|
- type: manhattan_pearson |
|
value: 15.655877492684972 |
|
- type: manhattan_spearman |
|
value: 9.084260532390138 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 16.116974803470246 |
|
- type: cos_sim_spearman |
|
value: 16.903085094570333 |
|
- type: euclidean_pearson |
|
value: 16.277560475636694 |
|
- type: euclidean_spearman |
|
value: 16.903085094570333 |
|
- type: manhattan_pearson |
|
value: 20.321632312194925 |
|
- type: manhattan_spearman |
|
value: 28.17180849095055 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: 8913289635987208e6e7c72789e4be2fe94b6abd |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.75945741541354 |
|
- type: cos_sim_spearman |
|
value: 83.08944658809418 |
|
- type: euclidean_pearson |
|
value: 83.5587988852494 |
|
- type: euclidean_spearman |
|
value: 83.08938533093635 |
|
- type: manhattan_pearson |
|
value: 83.56896467262781 |
|
- type: manhattan_spearman |
|
value: 83.11516183577004 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: 56a6d0140cf6356659e2a7c1413286a774468d44 |
|
metrics: |
|
- type: map |
|
value: 87.20127714147824 |
|
- type: mrr |
|
value: 96.44415315983943 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: a75ae049398addde9b70f6b268875f5cbce99089 |
|
metrics: |
|
- type: map_at_1 |
|
value: 47.483 |
|
- type: map_at_10 |
|
value: 57.18600000000001 |
|
- type: map_at_100 |
|
value: 57.863 |
|
- type: map_at_1000 |
|
value: 57.901 |
|
- type: map_at_3 |
|
value: 53.909 |
|
- type: map_at_5 |
|
value: 55.57299999999999 |
|
- type: mrr_at_1 |
|
value: 50.0 |
|
- type: mrr_at_10 |
|
value: 58.607 |
|
- type: mrr_at_100 |
|
value: 59.169000000000004 |
|
- type: mrr_at_1000 |
|
value: 59.207 |
|
- type: mrr_at_3 |
|
value: 56.056 |
|
- type: mrr_at_5 |
|
value: 57.422 |
|
- type: ndcg_at_1 |
|
value: 50.0 |
|
- type: ndcg_at_10 |
|
value: 62.639 |
|
- type: ndcg_at_100 |
|
value: 65.549 |
|
- type: ndcg_at_1000 |
|
value: 66.497 |
|
- type: ndcg_at_3 |
|
value: 56.602 |
|
- type: ndcg_at_5 |
|
value: 59.270999999999994 |
|
- type: precision_at_1 |
|
value: 50.0 |
|
- type: precision_at_10 |
|
value: 8.833 |
|
- type: precision_at_100 |
|
value: 1.0370000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11100000000000002 |
|
- type: precision_at_3 |
|
value: 22.222 |
|
- type: precision_at_5 |
|
value: 15.0 |
|
- type: recall_at_1 |
|
value: 47.483 |
|
- type: recall_at_10 |
|
value: 78.233 |
|
- type: recall_at_100 |
|
value: 91.167 |
|
- type: recall_at_1000 |
|
value: 98.333 |
|
- type: recall_at_3 |
|
value: 61.956 |
|
- type: recall_at_5 |
|
value: 68.43900000000001 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.72871287128713 |
|
- type: cos_sim_ap |
|
value: 92.44554820122362 |
|
- type: cos_sim_f1 |
|
value: 85.89083419155509 |
|
- type: cos_sim_precision |
|
value: 88.53503184713377 |
|
- type: cos_sim_recall |
|
value: 83.39999999999999 |
|
- type: dot_accuracy |
|
value: 99.72871287128713 |
|
- type: dot_ap |
|
value: 92.44554820122363 |
|
- type: dot_f1 |
|
value: 85.89083419155509 |
|
- type: dot_precision |
|
value: 88.53503184713377 |
|
- type: dot_recall |
|
value: 83.39999999999999 |
|
- type: euclidean_accuracy |
|
value: 99.72871287128713 |
|
- type: euclidean_ap |
|
value: 92.44554820122362 |
|
- type: euclidean_f1 |
|
value: 85.89083419155509 |
|
- type: euclidean_precision |
|
value: 88.53503184713377 |
|
- type: euclidean_recall |
|
value: 83.39999999999999 |
|
- type: manhattan_accuracy |
|
value: 99.73267326732673 |
|
- type: manhattan_ap |
|
value: 92.57860510428624 |
|
- type: manhattan_f1 |
|
value: 86.20170597089813 |
|
- type: manhattan_precision |
|
value: 86.5055387713998 |
|
- type: manhattan_recall |
|
value: 85.9 |
|
- type: max_accuracy |
|
value: 99.73267326732673 |
|
- type: max_ap |
|
value: 92.57860510428624 |
|
- type: max_f1 |
|
value: 86.20170597089813 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 |
|
metrics: |
|
- type: v_measure |
|
value: 53.04887987709521 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 |
|
metrics: |
|
- type: v_measure |
|
value: 33.133116286225686 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 |
|
metrics: |
|
- type: map |
|
value: 51.4732035634667 |
|
- type: mrr |
|
value: 52.263880931160344 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.365093191497525 |
|
- type: cos_sim_spearman |
|
value: 27.90160600683062 |
|
- type: dot_pearson |
|
value: 29.36509564650472 |
|
- type: dot_spearman |
|
value: 27.90160600683062 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.17600000000000002 |
|
- type: map_at_10 |
|
value: 1.164 |
|
- type: map_at_100 |
|
value: 6.048 |
|
- type: map_at_1000 |
|
value: 14.913000000000002 |
|
- type: map_at_3 |
|
value: 0.44799999999999995 |
|
- type: map_at_5 |
|
value: 0.658 |
|
- type: mrr_at_1 |
|
value: 64.0 |
|
- type: mrr_at_10 |
|
value: 73.538 |
|
- type: mrr_at_100 |
|
value: 73.752 |
|
- type: mrr_at_1000 |
|
value: 73.752 |
|
- type: mrr_at_3 |
|
value: 70.667 |
|
- type: mrr_at_5 |
|
value: 72.467 |
|
- type: ndcg_at_1 |
|
value: 59.0 |
|
- type: ndcg_at_10 |
|
value: 50.815999999999995 |
|
- type: ndcg_at_100 |
|
value: 37.662 |
|
- type: ndcg_at_1000 |
|
value: 35.907 |
|
- type: ndcg_at_3 |
|
value: 54.112 |
|
- type: ndcg_at_5 |
|
value: 51.19200000000001 |
|
- type: precision_at_1 |
|
value: 64.0 |
|
- type: precision_at_10 |
|
value: 55.400000000000006 |
|
- type: precision_at_100 |
|
value: 38.48 |
|
- type: precision_at_1000 |
|
value: 16.012 |
|
- type: precision_at_3 |
|
value: 57.99999999999999 |
|
- type: precision_at_5 |
|
value: 54.800000000000004 |
|
- type: recall_at_1 |
|
value: 0.17600000000000002 |
|
- type: recall_at_10 |
|
value: 1.435 |
|
- type: recall_at_100 |
|
value: 9.122 |
|
- type: recall_at_1000 |
|
value: 34.378 |
|
- type: recall_at_3 |
|
value: 0.47400000000000003 |
|
- type: recall_at_5 |
|
value: 0.736 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.813 |
|
- type: map_at_10 |
|
value: 6.632000000000001 |
|
- type: map_at_100 |
|
value: 11.485 |
|
- type: map_at_1000 |
|
value: 13.031 |
|
- type: map_at_3 |
|
value: 3.5069999999999997 |
|
- type: map_at_5 |
|
value: 5.183 |
|
- type: mrr_at_1 |
|
value: 18.367 |
|
- type: mrr_at_10 |
|
value: 33.035 |
|
- type: mrr_at_100 |
|
value: 34.117 |
|
- type: mrr_at_1000 |
|
value: 34.168 |
|
- type: mrr_at_3 |
|
value: 27.551 |
|
- type: mrr_at_5 |
|
value: 31.326999999999998 |
|
- type: ndcg_at_1 |
|
value: 15.306000000000001 |
|
- type: ndcg_at_10 |
|
value: 17.224 |
|
- type: ndcg_at_100 |
|
value: 29.287999999999997 |
|
- type: ndcg_at_1000 |
|
value: 41.613 |
|
- type: ndcg_at_3 |
|
value: 15.786 |
|
- type: ndcg_at_5 |
|
value: 16.985 |
|
- type: precision_at_1 |
|
value: 18.367 |
|
- type: precision_at_10 |
|
value: 15.714 |
|
- type: precision_at_100 |
|
value: 6.4079999999999995 |
|
- type: precision_at_1000 |
|
value: 1.451 |
|
- type: precision_at_3 |
|
value: 17.687 |
|
- type: precision_at_5 |
|
value: 18.776 |
|
- type: recall_at_1 |
|
value: 1.813 |
|
- type: recall_at_10 |
|
value: 12.006 |
|
- type: recall_at_100 |
|
value: 41.016999999999996 |
|
- type: recall_at_1000 |
|
value: 78.632 |
|
- type: recall_at_3 |
|
value: 4.476999999999999 |
|
- type: recall_at_5 |
|
value: 7.904999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de |
|
metrics: |
|
- type: accuracy |
|
value: 67.4694 |
|
- type: ap |
|
value: 12.602604676283388 |
|
- type: f1 |
|
value: 51.82471949507483 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: 62146448f05be9e52a36b8ee9936447ea787eede |
|
metrics: |
|
- type: accuracy |
|
value: 54.25297113752122 |
|
- type: f1 |
|
value: 54.50148311546008 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 |
|
metrics: |
|
- type: v_measure |
|
value: 47.467044776612376 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.78869881385229 |
|
- type: cos_sim_ap |
|
value: 70.01722500181003 |
|
- type: cos_sim_f1 |
|
value: 65.943384461903 |
|
- type: cos_sim_precision |
|
value: 62.52069047056041 |
|
- type: cos_sim_recall |
|
value: 69.76253298153034 |
|
- type: dot_accuracy |
|
value: 84.78869881385229 |
|
- type: dot_ap |
|
value: 70.01721947474665 |
|
- type: dot_f1 |
|
value: 65.943384461903 |
|
- type: dot_precision |
|
value: 62.52069047056041 |
|
- type: dot_recall |
|
value: 69.76253298153034 |
|
- type: euclidean_accuracy |
|
value: 84.78869881385229 |
|
- type: euclidean_ap |
|
value: 70.01721811552584 |
|
- type: euclidean_f1 |
|
value: 65.943384461903 |
|
- type: euclidean_precision |
|
value: 62.52069047056041 |
|
- type: euclidean_recall |
|
value: 69.76253298153034 |
|
- type: manhattan_accuracy |
|
value: 84.68140907194373 |
|
- type: manhattan_ap |
|
value: 69.90669388421887 |
|
- type: manhattan_f1 |
|
value: 66.00842865743527 |
|
- type: manhattan_precision |
|
value: 60.70874861572536 |
|
- type: manhattan_recall |
|
value: 72.32189973614776 |
|
- type: max_accuracy |
|
value: 84.78869881385229 |
|
- type: max_ap |
|
value: 70.01722500181003 |
|
- type: max_f1 |
|
value: 66.00842865743527 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.4367601971514 |
|
- type: cos_sim_ap |
|
value: 84.77318195783158 |
|
- type: cos_sim_f1 |
|
value: 77.13502703503444 |
|
- type: cos_sim_precision |
|
value: 74.31140288283146 |
|
- type: cos_sim_recall |
|
value: 80.18170619032954 |
|
- type: dot_accuracy |
|
value: 88.4367601971514 |
|
- type: dot_ap |
|
value: 84.77317449778201 |
|
- type: dot_f1 |
|
value: 77.13502703503444 |
|
- type: dot_precision |
|
value: 74.31140288283146 |
|
- type: dot_recall |
|
value: 80.18170619032954 |
|
- type: euclidean_accuracy |
|
value: 88.4367601971514 |
|
- type: euclidean_ap |
|
value: 84.77314948093711 |
|
- type: euclidean_f1 |
|
value: 77.13502703503444 |
|
- type: euclidean_precision |
|
value: 74.31140288283146 |
|
- type: euclidean_recall |
|
value: 80.18170619032954 |
|
- type: manhattan_accuracy |
|
value: 88.43287926417511 |
|
- type: manhattan_ap |
|
value: 84.71097141640011 |
|
- type: manhattan_f1 |
|
value: 77.08356453223837 |
|
- type: manhattan_precision |
|
value: 74.18298326806692 |
|
- type: manhattan_recall |
|
value: 80.2202032645519 |
|
- type: max_accuracy |
|
value: 88.4367601971514 |
|
- type: max_ap |
|
value: 84.77318195783158 |
|
- type: max_f1 |
|
value: 77.13502703503444 |
|
--- |
|
|
|
|
|
# all-MiniLM-L12-v2 |
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
## Usage (Sentence-Transformers) |
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v2') |
|
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v2') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
# Normalize embeddings |
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
For an automated evaluation of this model, see *MTEB*: https://huggingface.co/spaces/mteb/leaderboard or the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v2) |
|
|
|
------ |
|
|
|
## Background |
|
|
|
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised |
|
contrastive learning objective. We used the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a |
|
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. |
|
|
|
We developped this model during the |
|
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), |
|
organized by Hugging Face. We developped this model as part of the project: |
|
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. |
|
|
|
## Intended uses |
|
|
|
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures |
|
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. |
|
|
|
By default, input text longer than 256 word pieces is truncated. |
|
|
|
|
|
## Training procedure |
|
|
|
### Pre-training |
|
|
|
We use the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure. |
|
|
|
### Fine-tuning |
|
|
|
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. |
|
We then apply the cross entropy loss by comparing with true pairs. |
|
|
|
#### Hyper parameters |
|
|
|
We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). |
|
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with |
|
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. |
|
|
|
#### Training data |
|
|
|
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. |
|
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. |
|
|
|
|
|
| Dataset | Paper | Number of training tuples | |
|
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:| |
|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | |
|
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | |
|
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | |
|
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | |
|
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | |
|
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | |
|
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | |
|
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | |
|
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | |
|
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| |
|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | |
|
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | |
|
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | |
|
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | |
|
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | |
|
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | |
|
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | |
|
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | |
|
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | |
|
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | |
|
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | |
|
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | |
|
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | |
|
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | |
|
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | |
|
| **Total** | | **1,170,060,424** | |