all-MiniLM-L12-v2 / README.md
Muennighoff's picture
Add MTEB metadata
9c6f000
|
raw
history blame
118 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
language: en
license: apache-2.0
datasets:
  - s2orc
  - flax-sentence-embeddings/stackexchange_xml
  - MS Marco
  - gooaq
  - yahoo_answers_topics
  - code_search_net
  - search_qa
  - eli5
  - snli
  - multi_nli
  - wikihow
  - natural_questions
  - trivia_qa
  - embedding-data/sentence-compression
  - embedding-data/flickr30k-captions
  - embedding-data/altlex
  - embedding-data/simple-wiki
  - embedding-data/QQP
  - embedding-data/SPECTER
  - embedding-data/PAQ_pairs
  - embedding-data/WikiAnswers
model-index:
  - name: all-MiniLM-L12-v2
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 65.28358208955224
          - type: ap
            value: 28.02247873560022
          - type: f1
            value: 59.09977445939425
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 57.09850107066381
          - type: ap
            value: 73.38224986285773
          - type: f1
            value: 55.183322516223434
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
        metrics:
          - type: accuracy
            value: 67.24137931034483
          - type: ap
            value: 17.93337056203553
          - type: f1
            value: 55.200711090858846
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 59.91434689507494
          - type: ap
            value: 13.610920446878454
          - type: f1
            value: 48.70464699796398
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 62.984899999999996
          - type: ap
            value: 58.19701547898307
          - type: f1
            value: 62.704020410756144
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 30.792
          - type: f1
            value: 30.254565315575437
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 25.907999999999998
          - type: f1
            value: 25.538149526380543
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 27.634000000000004
          - type: f1
            value: 27.287076320171728
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 27.540000000000003
          - type: f1
            value: 27.21486019130574
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 23.566000000000003
          - type: f1
            value: 23.3492650771905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
        metrics:
          - type: accuracy
            value: 22.99
          - type: f1
            value: 22.47175043426865
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.257
          - type: map_at_10
            value: 38.083
          - type: map_at_100
            value: 39.263999999999996
          - type: map_at_1000
            value: 39.273
          - type: map_at_3
            value: 32.574999999999996
          - type: map_at_5
            value: 35.669000000000004
          - type: mrr_at_1
            value: 23.613
          - type: mrr_at_10
            value: 38.243
          - type: mrr_at_100
            value: 39.410000000000004
          - type: mrr_at_1000
            value: 39.419
          - type: mrr_at_3
            value: 32.883
          - type: mrr_at_5
            value: 35.766999999999996
          - type: ndcg_at_1
            value: 23.257
          - type: ndcg_at_10
            value: 47.128
          - type: ndcg_at_100
            value: 52.093
          - type: ndcg_at_1000
            value: 52.315999999999995
          - type: ndcg_at_3
            value: 35.794
          - type: ndcg_at_5
            value: 41.364000000000004
          - type: precision_at_1
            value: 23.257
          - type: precision_at_10
            value: 7.632
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.055
          - type: precision_at_5
            value: 11.735
          - type: recall_at_1
            value: 23.257
          - type: recall_at_10
            value: 76.31599999999999
          - type: recall_at_100
            value: 97.866
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 45.164
          - type: recall_at_5
            value: 58.677
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 46.06982724111873
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 37.501829188148264
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 64.06160552465775
          - type: mrr
            value: 77.40029899309677
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 86.73300462416691
          - type: cos_sim_spearman
            value: 83.56756679430214
          - type: euclidean_pearson
            value: 84.35153960397948
          - type: euclidean_spearman
            value: 83.56756679430214
          - type: manhattan_pearson
            value: 84.10087673223914
          - type: manhattan_spearman
            value: 83.58383222516198
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 80.40259740259741
          - type: f1
            value: 79.7932665380276
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 36.985834019439366
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 33.207831360185644
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 34.975
          - type: map_at_10
            value: 47.227999999999994
          - type: map_at_100
            value: 48.91
          - type: map_at_1000
            value: 49.016
          - type: map_at_3
            value: 43.334
          - type: map_at_5
            value: 45.353
          - type: mrr_at_1
            value: 43.348
          - type: mrr_at_10
            value: 53.744
          - type: mrr_at_100
            value: 54.432
          - type: mrr_at_1000
            value: 54.458
          - type: mrr_at_3
            value: 51.359
          - type: mrr_at_5
            value: 52.825
          - type: ndcg_at_1
            value: 43.348
          - type: ndcg_at_10
            value: 54.118
          - type: ndcg_at_100
            value: 59.496
          - type: ndcg_at_1000
            value: 60.846999999999994
          - type: ndcg_at_3
            value: 49.001
          - type: ndcg_at_5
            value: 51.245
          - type: precision_at_1
            value: 43.348
          - type: precision_at_10
            value: 10.658
          - type: precision_at_100
            value: 1.701
          - type: precision_at_1000
            value: 0.214
          - type: precision_at_3
            value: 23.701
          - type: precision_at_5
            value: 17.082
          - type: recall_at_1
            value: 34.975
          - type: recall_at_10
            value: 66.291
          - type: recall_at_100
            value: 88.727
          - type: recall_at_1000
            value: 97.26700000000001
          - type: recall_at_3
            value: 51.505
          - type: recall_at_5
            value: 57.833
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 31.509999999999998
          - type: map_at_10
            value: 43.401
          - type: map_at_100
            value: 44.762
          - type: map_at_1000
            value: 44.906
          - type: map_at_3
            value: 39.83
          - type: map_at_5
            value: 41.784
          - type: mrr_at_1
            value: 39.936
          - type: mrr_at_10
            value: 49.534
          - type: mrr_at_100
            value: 50.126000000000005
          - type: mrr_at_1000
            value: 50.163999999999994
          - type: mrr_at_3
            value: 46.996
          - type: mrr_at_5
            value: 48.508
          - type: ndcg_at_1
            value: 39.936
          - type: ndcg_at_10
            value: 49.845
          - type: ndcg_at_100
            value: 54.25600000000001
          - type: ndcg_at_1000
            value: 56.227000000000004
          - type: ndcg_at_3
            value: 44.982
          - type: ndcg_at_5
            value: 47.187
          - type: precision_at_1
            value: 39.936
          - type: precision_at_10
            value: 9.771
          - type: precision_at_100
            value: 1.575
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 22.314
          - type: precision_at_5
            value: 15.975
          - type: recall_at_1
            value: 31.509999999999998
          - type: recall_at_10
            value: 61.468
          - type: recall_at_100
            value: 80.023
          - type: recall_at_1000
            value: 92.267
          - type: recall_at_3
            value: 46.698
          - type: recall_at_5
            value: 53.03600000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 38.577
          - type: map_at_10
            value: 51.041000000000004
          - type: map_at_100
            value: 52.141000000000005
          - type: map_at_1000
            value: 52.190000000000005
          - type: map_at_3
            value: 47.904
          - type: map_at_5
            value: 49.645
          - type: mrr_at_1
            value: 44.138
          - type: mrr_at_10
            value: 54.36
          - type: mrr_at_100
            value: 55.05799999999999
          - type: mrr_at_1000
            value: 55.084
          - type: mrr_at_3
            value: 52.017
          - type: mrr_at_5
            value: 53.321
          - type: ndcg_at_1
            value: 44.138
          - type: ndcg_at_10
            value: 56.855999999999995
          - type: ndcg_at_100
            value: 61.133
          - type: ndcg_at_1000
            value: 62.17399999999999
          - type: ndcg_at_3
            value: 51.624
          - type: ndcg_at_5
            value: 54.108999999999995
          - type: precision_at_1
            value: 44.138
          - type: precision_at_10
            value: 9.16
          - type: precision_at_100
            value: 1.2309999999999999
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 23.156
          - type: precision_at_5
            value: 15.762
          - type: recall_at_1
            value: 38.577
          - type: recall_at_10
            value: 70.638
          - type: recall_at_100
            value: 89.01
          - type: recall_at_1000
            value: 96.53699999999999
          - type: recall_at_3
            value: 56.635000000000005
          - type: recall_at_5
            value: 62.731
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 27.038
          - type: map_at_10
            value: 36.108000000000004
          - type: map_at_100
            value: 37.316
          - type: map_at_1000
            value: 37.396
          - type: map_at_3
            value: 33.206
          - type: map_at_5
            value: 34.674
          - type: mrr_at_1
            value: 29.04
          - type: mrr_at_10
            value: 37.979
          - type: mrr_at_100
            value: 39.056000000000004
          - type: mrr_at_1000
            value: 39.11
          - type: mrr_at_3
            value: 35.348
          - type: mrr_at_5
            value: 36.675999999999995
          - type: ndcg_at_1
            value: 29.04
          - type: ndcg_at_10
            value: 41.408
          - type: ndcg_at_100
            value: 46.918
          - type: ndcg_at_1000
            value: 48.827
          - type: ndcg_at_3
            value: 35.699999999999996
          - type: ndcg_at_5
            value: 38.112
          - type: precision_at_1
            value: 29.04
          - type: precision_at_10
            value: 6.463000000000001
          - type: precision_at_100
            value: 0.9570000000000001
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 15.104000000000001
          - type: precision_at_5
            value: 10.508000000000001
          - type: recall_at_1
            value: 27.038
          - type: recall_at_10
            value: 55.989
          - type: recall_at_100
            value: 80.418
          - type: recall_at_1000
            value: 94.506
          - type: recall_at_3
            value: 40.388000000000005
          - type: recall_at_5
            value: 46.085
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 17.264
          - type: map_at_10
            value: 26.157000000000004
          - type: map_at_100
            value: 27.503
          - type: map_at_1000
            value: 27.617000000000004
          - type: map_at_3
            value: 23.247999999999998
          - type: map_at_5
            value: 24.81
          - type: mrr_at_1
            value: 21.144
          - type: mrr_at_10
            value: 30.516
          - type: mrr_at_100
            value: 31.607000000000003
          - type: mrr_at_1000
            value: 31.673000000000002
          - type: mrr_at_3
            value: 27.716
          - type: mrr_at_5
            value: 29.357
          - type: ndcg_at_1
            value: 21.144
          - type: ndcg_at_10
            value: 31.86
          - type: ndcg_at_100
            value: 38.12
          - type: ndcg_at_1000
            value: 40.699000000000005
          - type: ndcg_at_3
            value: 26.411
          - type: ndcg_at_5
            value: 28.896
          - type: precision_at_1
            value: 21.144
          - type: precision_at_10
            value: 5.995
          - type: precision_at_100
            value: 1.058
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.894
          - type: precision_at_5
            value: 9.428
          - type: recall_at_1
            value: 17.264
          - type: recall_at_10
            value: 45.074
          - type: recall_at_100
            value: 71.817
          - type: recall_at_1000
            value: 89.846
          - type: recall_at_3
            value: 30.031000000000002
          - type: recall_at_5
            value: 36.233
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 28.668
          - type: map_at_10
            value: 40.382
          - type: map_at_100
            value: 41.836
          - type: map_at_1000
            value: 41.954
          - type: map_at_3
            value: 37.136
          - type: map_at_5
            value: 38.755
          - type: mrr_at_1
            value: 35.13
          - type: mrr_at_10
            value: 45.928999999999995
          - type: mrr_at_100
            value: 46.814
          - type: mrr_at_1000
            value: 46.854
          - type: mrr_at_3
            value: 43.423
          - type: mrr_at_5
            value: 44.79
          - type: ndcg_at_1
            value: 35.13
          - type: ndcg_at_10
            value: 46.81
          - type: ndcg_at_100
            value: 52.552
          - type: ndcg_at_1000
            value: 54.493
          - type: ndcg_at_3
            value: 41.732
          - type: ndcg_at_5
            value: 43.847
          - type: precision_at_1
            value: 35.13
          - type: precision_at_10
            value: 8.738999999999999
          - type: precision_at_100
            value: 1.373
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 20.372
          - type: precision_at_5
            value: 14.302000000000001
          - type: recall_at_1
            value: 28.668
          - type: recall_at_10
            value: 60.038000000000004
          - type: recall_at_100
            value: 83.736
          - type: recall_at_1000
            value: 96.184
          - type: recall_at_3
            value: 45.647999999999996
          - type: recall_at_5
            value: 51.212
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 25.287
          - type: map_at_10
            value: 35.351
          - type: map_at_100
            value: 36.867
          - type: map_at_1000
            value: 36.973
          - type: map_at_3
            value: 32.176
          - type: map_at_5
            value: 33.894999999999996
          - type: mrr_at_1
            value: 31.735000000000003
          - type: mrr_at_10
            value: 40.832
          - type: mrr_at_100
            value: 41.812
          - type: mrr_at_1000
            value: 41.864000000000004
          - type: mrr_at_3
            value: 38.489000000000004
          - type: mrr_at_5
            value: 39.654
          - type: ndcg_at_1
            value: 31.735000000000003
          - type: ndcg_at_10
            value: 41.327999999999996
          - type: ndcg_at_100
            value: 47.565000000000005
          - type: ndcg_at_1000
            value: 49.708000000000006
          - type: ndcg_at_3
            value: 36.391
          - type: ndcg_at_5
            value: 38.489000000000004
          - type: precision_at_1
            value: 31.735000000000003
          - type: precision_at_10
            value: 7.7170000000000005
          - type: precision_at_100
            value: 1.2670000000000001
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 17.808
          - type: precision_at_5
            value: 12.534
          - type: recall_at_1
            value: 25.287
          - type: recall_at_10
            value: 53.735
          - type: recall_at_100
            value: 80.149
          - type: recall_at_1000
            value: 94.756
          - type: recall_at_3
            value: 39.475
          - type: recall_at_5
            value: 45.532000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 26.613
          - type: map_at_10
            value: 36.747416666666666
          - type: map_at_100
            value: 38.091416666666674
          - type: map_at_1000
            value: 38.2075
          - type: map_at_3
            value: 33.630833333333335
          - type: map_at_5
            value: 35.28225
          - type: mrr_at_1
            value: 31.654
          - type: mrr_at_10
            value: 40.94166666666666
          - type: mrr_at_100
            value: 41.85883333333334
          - type: mrr_at_1000
            value: 41.910666666666664
          - type: mrr_at_3
            value: 38.44458333333334
          - type: mrr_at_5
            value: 39.84525000000001
          - type: ndcg_at_1
            value: 31.654
          - type: ndcg_at_10
            value: 42.533
          - type: ndcg_at_100
            value: 48.09741666666667
          - type: ndcg_at_1000
            value: 50.170166666666674
          - type: ndcg_at_3
            value: 37.37858333333333
          - type: ndcg_at_5
            value: 39.666666666666664
          - type: precision_at_1
            value: 31.654
          - type: precision_at_10
            value: 7.649500000000001
          - type: precision_at_100
            value: 1.2425
          - type: precision_at_1000
            value: 0.16175
          - type: precision_at_3
            value: 17.49625
          - type: precision_at_5
            value: 12.410333333333332
          - type: recall_at_1
            value: 26.613
          - type: recall_at_10
            value: 55.33375
          - type: recall_at_100
            value: 79.52791666666667
          - type: recall_at_1000
            value: 93.73391666666667
          - type: recall_at_3
            value: 40.861333333333334
          - type: recall_at_5
            value: 46.84675
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 26.079
          - type: map_at_10
            value: 33.481
          - type: map_at_100
            value: 34.494
          - type: map_at_1000
            value: 34.589999999999996
          - type: map_at_3
            value: 31.165
          - type: map_at_5
            value: 32.482
          - type: mrr_at_1
            value: 29.293999999999997
          - type: mrr_at_10
            value: 36.303000000000004
          - type: mrr_at_100
            value: 37.183
          - type: mrr_at_1000
            value: 37.254
          - type: mrr_at_3
            value: 34.33
          - type: mrr_at_5
            value: 35.519
          - type: ndcg_at_1
            value: 29.293999999999997
          - type: ndcg_at_10
            value: 37.817
          - type: ndcg_at_100
            value: 42.91
          - type: ndcg_at_1000
            value: 45.342
          - type: ndcg_at_3
            value: 33.695
          - type: ndcg_at_5
            value: 35.747
          - type: precision_at_1
            value: 29.293999999999997
          - type: precision_at_10
            value: 5.951
          - type: precision_at_100
            value: 0.9400000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 14.519000000000002
          - type: precision_at_5
            value: 10.123
          - type: recall_at_1
            value: 26.079
          - type: recall_at_10
            value: 48.27
          - type: recall_at_100
            value: 71.64
          - type: recall_at_1000
            value: 89.775
          - type: recall_at_3
            value: 36.858000000000004
          - type: recall_at_5
            value: 42.013
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 18.17
          - type: map_at_10
            value: 26.483
          - type: map_at_100
            value: 27.732
          - type: map_at_1000
            value: 27.864
          - type: map_at_3
            value: 23.76
          - type: map_at_5
            value: 25.290000000000003
          - type: mrr_at_1
            value: 22.436
          - type: mrr_at_10
            value: 30.448999999999998
          - type: mrr_at_100
            value: 31.476
          - type: mrr_at_1000
            value: 31.548
          - type: mrr_at_3
            value: 28.051
          - type: mrr_at_5
            value: 29.421999999999997
          - type: ndcg_at_1
            value: 22.436
          - type: ndcg_at_10
            value: 31.662000000000003
          - type: ndcg_at_100
            value: 37.611
          - type: ndcg_at_1000
            value: 40.439
          - type: ndcg_at_3
            value: 26.939999999999998
          - type: ndcg_at_5
            value: 29.177999999999997
          - type: precision_at_1
            value: 22.436
          - type: precision_at_10
            value: 5.908
          - type: precision_at_100
            value: 1.056
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_3
            value: 12.962000000000002
          - type: precision_at_5
            value: 9.476999999999999
          - type: recall_at_1
            value: 18.17
          - type: recall_at_10
            value: 43.219
          - type: recall_at_100
            value: 70.106
          - type: recall_at_1000
            value: 90.04100000000001
          - type: recall_at_3
            value: 30.023
          - type: recall_at_5
            value: 35.845
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 28.016999999999996
          - type: map_at_10
            value: 38.123000000000005
          - type: map_at_100
            value: 39.367000000000004
          - type: map_at_1000
            value: 39.467999999999996
          - type: map_at_3
            value: 34.836
          - type: map_at_5
            value: 36.661
          - type: mrr_at_1
            value: 33.116
          - type: mrr_at_10
            value: 42.211
          - type: mrr_at_100
            value: 43.118
          - type: mrr_at_1000
            value: 43.169000000000004
          - type: mrr_at_3
            value: 39.521
          - type: mrr_at_5
            value: 41.154
          - type: ndcg_at_1
            value: 33.116
          - type: ndcg_at_10
            value: 43.86
          - type: ndcg_at_100
            value: 49.486000000000004
          - type: ndcg_at_1000
            value: 51.487
          - type: ndcg_at_3
            value: 38.303
          - type: ndcg_at_5
            value: 40.927
          - type: precision_at_1
            value: 33.116
          - type: precision_at_10
            value: 7.649
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 17.724
          - type: precision_at_5
            value: 12.668
          - type: recall_at_1
            value: 28.016999999999996
          - type: recall_at_10
            value: 57.032000000000004
          - type: recall_at_100
            value: 81.828
          - type: recall_at_1000
            value: 95.273
          - type: recall_at_3
            value: 41.733
          - type: recall_at_5
            value: 48.496
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 24.295
          - type: map_at_10
            value: 34.94
          - type: map_at_100
            value: 36.659000000000006
          - type: map_at_1000
            value: 36.902
          - type: map_at_3
            value: 31.562
          - type: map_at_5
            value: 33.28
          - type: mrr_at_1
            value: 29.644
          - type: mrr_at_10
            value: 39.467999999999996
          - type: mrr_at_100
            value: 40.561
          - type: mrr_at_1000
            value: 40.61
          - type: mrr_at_3
            value: 36.759
          - type: mrr_at_5
            value: 38.251000000000005
          - type: ndcg_at_1
            value: 29.644
          - type: ndcg_at_10
            value: 41.376000000000005
          - type: ndcg_at_100
            value: 47.701
          - type: ndcg_at_1000
            value: 49.925999999999995
          - type: ndcg_at_3
            value: 36.009
          - type: ndcg_at_5
            value: 38.23
          - type: precision_at_1
            value: 29.644
          - type: precision_at_10
            value: 8.182
          - type: precision_at_100
            value: 1.672
          - type: precision_at_1000
            value: 0.253
          - type: precision_at_3
            value: 17.325
          - type: precision_at_5
            value: 12.450999999999999
          - type: recall_at_1
            value: 24.295
          - type: recall_at_10
            value: 54.478
          - type: recall_at_100
            value: 81.85
          - type: recall_at_1000
            value: 95.395
          - type: recall_at_3
            value: 39.121
          - type: recall_at_5
            value: 45.465
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 19.476
          - type: map_at_10
            value: 28.274
          - type: map_at_100
            value: 29.509999999999998
          - type: map_at_1000
            value: 29.614
          - type: map_at_3
            value: 25.413000000000004
          - type: map_at_5
            value: 26.758
          - type: mrr_at_1
            value: 20.887
          - type: mrr_at_10
            value: 29.975
          - type: mrr_at_100
            value: 31.063000000000002
          - type: mrr_at_1000
            value: 31.14
          - type: mrr_at_3
            value: 27.326
          - type: mrr_at_5
            value: 28.666000000000004
          - type: ndcg_at_1
            value: 20.887
          - type: ndcg_at_10
            value: 33.456
          - type: ndcg_at_100
            value: 39.421
          - type: ndcg_at_1000
            value: 41.873
          - type: ndcg_at_3
            value: 27.755000000000003
          - type: ndcg_at_5
            value: 30.032999999999998
          - type: precision_at_1
            value: 20.887
          - type: precision_at_10
            value: 5.601
          - type: precision_at_100
            value: 0.915
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 12.076
          - type: precision_at_5
            value: 8.613999999999999
          - type: recall_at_1
            value: 19.476
          - type: recall_at_10
            value: 47.772999999999996
          - type: recall_at_100
            value: 75.031
          - type: recall_at_1000
            value: 92.96
          - type: recall_at_3
            value: 32.221
          - type: recall_at_5
            value: 37.68
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 8.341999999999999
          - type: map_at_10
            value: 14.524000000000001
          - type: map_at_100
            value: 16.114
          - type: map_at_1000
            value: 16.301
          - type: map_at_3
            value: 11.904
          - type: map_at_5
            value: 13.175
          - type: mrr_at_1
            value: 18.892999999999997
          - type: mrr_at_10
            value: 29.185
          - type: mrr_at_100
            value: 30.368000000000002
          - type: mrr_at_1000
            value: 30.418
          - type: mrr_at_3
            value: 25.548
          - type: mrr_at_5
            value: 27.708
          - type: ndcg_at_1
            value: 18.892999999999997
          - type: ndcg_at_10
            value: 21.572
          - type: ndcg_at_100
            value: 28.51
          - type: ndcg_at_1000
            value: 32.204
          - type: ndcg_at_3
            value: 16.753
          - type: ndcg_at_5
            value: 18.5
          - type: precision_at_1
            value: 18.892999999999997
          - type: precision_at_10
            value: 6.997000000000001
          - type: precision_at_100
            value: 1.433
          - type: precision_at_1000
            value: 0.211
          - type: precision_at_3
            value: 12.53
          - type: precision_at_5
            value: 10.098
          - type: recall_at_1
            value: 8.341999999999999
          - type: recall_at_10
            value: 27.215
          - type: recall_at_100
            value: 51.534
          - type: recall_at_1000
            value: 72.655
          - type: recall_at_3
            value: 15.634
          - type: recall_at_5
            value: 20.227
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 7.5920000000000005
          - type: map_at_10
            value: 15.42
          - type: map_at_100
            value: 21.269
          - type: map_at_1000
            value: 22.55
          - type: map_at_3
            value: 11.221
          - type: map_at_5
            value: 13.225999999999999
          - type: mrr_at_1
            value: 58.25
          - type: mrr_at_10
            value: 66.237
          - type: mrr_at_100
            value: 66.74799999999999
          - type: mrr_at_1000
            value: 66.762
          - type: mrr_at_3
            value: 64.167
          - type: mrr_at_5
            value: 65.229
          - type: ndcg_at_1
            value: 45.625
          - type: ndcg_at_10
            value: 33.355000000000004
          - type: ndcg_at_100
            value: 37.484
          - type: ndcg_at_1000
            value: 44.523
          - type: ndcg_at_3
            value: 37.879000000000005
          - type: ndcg_at_5
            value: 35.841
          - type: precision_at_1
            value: 58.25
          - type: precision_at_10
            value: 26.450000000000003
          - type: precision_at_100
            value: 8.290000000000001
          - type: precision_at_1000
            value: 1.744
          - type: precision_at_3
            value: 40.75
          - type: precision_at_5
            value: 35
          - type: recall_at_1
            value: 7.5920000000000005
          - type: recall_at_10
            value: 20.064
          - type: recall_at_100
            value: 43.187
          - type: recall_at_1000
            value: 66.154
          - type: recall_at_3
            value: 12.366000000000001
          - type: recall_at_5
            value: 15.631
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 41.17
          - type: f1
            value: 36.961926373935974
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 37.361
          - type: map_at_10
            value: 49.407000000000004
          - type: map_at_100
            value: 50.11600000000001
          - type: map_at_1000
            value: 50.151999999999994
          - type: map_at_3
            value: 46.608
          - type: map_at_5
            value: 48.286
          - type: mrr_at_1
            value: 40.204
          - type: mrr_at_10
            value: 52.714000000000006
          - type: mrr_at_100
            value: 53.347
          - type: mrr_at_1000
            value: 53.373000000000005
          - type: mrr_at_3
            value: 49.935
          - type: mrr_at_5
            value: 51.626000000000005
          - type: ndcg_at_1
            value: 40.204
          - type: ndcg_at_10
            value: 55.905
          - type: ndcg_at_100
            value: 59.229
          - type: ndcg_at_1000
            value: 60.077000000000005
          - type: ndcg_at_3
            value: 50.367
          - type: ndcg_at_5
            value: 53.291999999999994
          - type: precision_at_1
            value: 40.204
          - type: precision_at_10
            value: 8
          - type: precision_at_100
            value: 0.979
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 20.997
          - type: precision_at_5
            value: 14.215
          - type: recall_at_1
            value: 37.361
          - type: recall_at_10
            value: 72.775
          - type: recall_at_100
            value: 87.883
          - type: recall_at_1000
            value: 94.204
          - type: recall_at_3
            value: 57.830000000000005
          - type: recall_at_5
            value: 64.888
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 18.257
          - type: map_at_10
            value: 29.694
          - type: map_at_100
            value: 31.593
          - type: map_at_1000
            value: 31.795
          - type: map_at_3
            value: 25.778000000000002
          - type: map_at_5
            value: 27.901999999999997
          - type: mrr_at_1
            value: 36.574
          - type: mrr_at_10
            value: 45.562000000000005
          - type: mrr_at_100
            value: 46.479
          - type: mrr_at_1000
            value: 46.52
          - type: mrr_at_3
            value: 43.184
          - type: mrr_at_5
            value: 44.558
          - type: ndcg_at_1
            value: 36.574
          - type: ndcg_at_10
            value: 37.274
          - type: ndcg_at_100
            value: 44.379000000000005
          - type: ndcg_at_1000
            value: 47.803000000000004
          - type: ndcg_at_3
            value: 33.999
          - type: ndcg_at_5
            value: 34.927
          - type: precision_at_1
            value: 36.574
          - type: precision_at_10
            value: 10.571
          - type: precision_at_100
            value: 1.779
          - type: precision_at_1000
            value: 0.23700000000000002
          - type: precision_at_3
            value: 22.942
          - type: precision_at_5
            value: 16.944
          - type: recall_at_1
            value: 18.257
          - type: recall_at_10
            value: 43.46
          - type: recall_at_100
            value: 70.017
          - type: recall_at_1000
            value: 90.838
          - type: recall_at_3
            value: 30.520999999999997
          - type: recall_at_5
            value: 35.977
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 25.935000000000002
          - type: map_at_10
            value: 35.96
          - type: map_at_100
            value: 36.811
          - type: map_at_1000
            value: 36.894
          - type: map_at_3
            value: 33.479
          - type: map_at_5
            value: 34.93
          - type: mrr_at_1
            value: 51.870000000000005
          - type: mrr_at_10
            value: 59.671
          - type: mrr_at_100
            value: 60.153
          - type: mrr_at_1000
            value: 60.183
          - type: mrr_at_3
            value: 57.815000000000005
          - type: mrr_at_5
            value: 58.965999999999994
          - type: ndcg_at_1
            value: 51.870000000000005
          - type: ndcg_at_10
            value: 44.589
          - type: ndcg_at_100
            value: 48.113
          - type: ndcg_at_1000
            value: 49.962
          - type: ndcg_at_3
            value: 40.304
          - type: ndcg_at_5
            value: 42.543
          - type: precision_at_1
            value: 51.870000000000005
          - type: precision_at_10
            value: 9.454
          - type: precision_at_100
            value: 1.225
          - type: precision_at_1000
            value: 0.147
          - type: precision_at_3
            value: 25.131999999999998
          - type: precision_at_5
            value: 16.851
          - type: recall_at_1
            value: 25.935000000000002
          - type: recall_at_10
            value: 47.272
          - type: recall_at_100
            value: 61.229
          - type: recall_at_1000
            value: 73.55199999999999
          - type: recall_at_3
            value: 37.698
          - type: recall_at_5
            value: 42.126999999999995
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 59.76079999999999
          - type: ap
            value: 55.90381572041755
          - type: f1
            value: 58.99832553463791
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
        metrics:
          - type: map_at_1
            value: 20.666999999999998
          - type: map_at_10
            value: 32.425
          - type: map_at_100
            value: 33.586
          - type: map_at_1000
            value: 33.643
          - type: map_at_3
            value: 28.836000000000002
          - type: map_at_5
            value: 30.847
          - type: mrr_at_1
            value: 21.275
          - type: mrr_at_10
            value: 33.062999999999995
          - type: mrr_at_100
            value: 34.168
          - type: mrr_at_1000
            value: 34.217999999999996
          - type: mrr_at_3
            value: 29.491
          - type: mrr_at_5
            value: 31.502999999999997
          - type: ndcg_at_1
            value: 21.246000000000002
          - type: ndcg_at_10
            value: 39.034
          - type: ndcg_at_100
            value: 44.768
          - type: ndcg_at_1000
            value: 46.2
          - type: ndcg_at_3
            value: 31.652
          - type: ndcg_at_5
            value: 35.257
          - type: precision_at_1
            value: 21.246000000000002
          - type: precision_at_10
            value: 6.196
          - type: precision_at_100
            value: 0.909
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 13.547999999999998
          - type: precision_at_5
            value: 9.946000000000002
          - type: recall_at_1
            value: 20.666999999999998
          - type: recall_at_10
            value: 59.321999999999996
          - type: recall_at_100
            value: 86.158
          - type: recall_at_1000
            value: 97.154
          - type: recall_at_3
            value: 39.160000000000004
          - type: recall_at_5
            value: 47.82
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 91.89922480620154
          - type: f1
            value: 91.66762682851963
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 72.03719357565511
          - type: f1
            value: 68.75742308679864
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 72.98532354903269
          - type: f1
            value: 71.33173021994274
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 75.59348575007829
          - type: f1
            value: 73.1511918522243
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 40.36213696665471
          - type: f1
            value: 37.865703085609475
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 17.099457504520796
          - type: f1
            value: 12.86835498185132
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 62.83629730962153
          - type: f1
            value: 44.241027031016735
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 43.412228796844175
          - type: f1
            value: 25.96122949091921
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 41.8812541694463
          - type: f1
            value: 27.93481154758236
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 38.93830253679925
          - type: f1
            value: 25.820783392796052
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 17.7518823951237
          - type: f1
            value: 11.681226129204576
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 5.631103074141048
          - type: f1
            value: 2.046543337618445
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
        metrics:
          - type: accuracy
            value: 38.94082044384667
          - type: f1
            value: 36.222023448848596
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
        metrics:
          - type: accuracy
            value: 2.451244115669133
          - type: f1
            value: 1.1859369824825732
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
        metrics:
          - type: accuracy
            value: 20.938130464021523
          - type: f1
            value: 17.984223607695032
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
        metrics:
          - type: accuracy
            value: 34.25016812373907
          - type: f1
            value: 33.954933856088616
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
        metrics:
          - type: accuracy
            value: 13.665097511768659
          - type: f1
            value: 12.091606412618153
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
        metrics:
          - type: accuracy
            value: 35.7128446536651
          - type: f1
            value: 33.62071051640523
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
        metrics:
          - type: accuracy
            value: 44.425016812373904
          - type: f1
            value: 41.20770166767181
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 44.1661062542031
          - type: f1
            value: 40.374580049860995
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
        metrics:
          - type: accuracy
            value: 28.698722259583054
          - type: f1
            value: 24.131330009557754
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 67.14862138533961
          - type: f1
            value: 65.29267177342918
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 40.907868190988566
          - type: f1
            value: 39.705805513162154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
        metrics:
          - type: accuracy
            value: 23.517148621385342
          - type: f1
            value: 20.450403227141454
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
        metrics:
          - type: accuracy
            value: 39.27370544720915
          - type: f1
            value: 36.44557663703388
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 44.81506388702085
          - type: f1
            value: 42.61335088326293
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
        metrics:
          - type: accuracy
            value: 23.648285137861468
          - type: f1
            value: 19.948568467541378
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 17.97579018157364
          - type: f1
            value: 16.06739661356912
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
        metrics:
          - type: accuracy
            value: 37.995965030262276
          - type: f1
            value: 35.26841971527663
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
        metrics:
          - type: accuracy
            value: 8.691997310020176
          - type: f1
            value: 7.237344584036491
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
        metrics:
          - type: accuracy
            value: 39.66039004707465
          - type: f1
            value: 38.775085127634476
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
        metrics:
          - type: accuracy
            value: 35.141223940820446
          - type: f1
            value: 33.61281534585094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
        metrics:
          - type: accuracy
            value: 43.17081371889711
          - type: f1
            value: 41.80158989235553
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 30.944855413584392
          - type: f1
            value: 27.785702058036733
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
        metrics:
          - type: accuracy
            value: 36.69468728984533
          - type: f1
            value: 34.21258336813279
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
        metrics:
          - type: accuracy
            value: 9.169468728984533
          - type: f1
            value: 6.904570655222885
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
        metrics:
          - type: accuracy
            value: 4.986550100874243
          - type: f1
            value: 1.7161855654054863
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
        metrics:
          - type: accuracy
            value: 3.0766644250168125
          - type: f1
            value: 1.9577724201468871
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
        metrics:
          - type: accuracy
            value: 19.966375252185607
          - type: f1
            value: 16.545470254940454
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
        metrics:
          - type: accuracy
            value: 38.61129791526564
          - type: f1
            value: 37.447802930149614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
        metrics:
          - type: accuracy
            value: 2.85137861466039
          - type: f1
            value: 0.8642500845287098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
        metrics:
          - type: accuracy
            value: 23.24815063887021
          - type: f1
            value: 22.162182623622098
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
        metrics:
          - type: accuracy
            value: 36.21385339609952
          - type: f1
            value: 33.62879988681565
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
        metrics:
          - type: accuracy
            value: 4.381304640215198
          - type: f1
            value: 1.4197071894925672
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
        metrics:
          - type: accuracy
            value: 41.91324815063887
          - type: f1
            value: 38.890562616282196
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
        metrics:
          - type: accuracy
            value: 41.85272360457296
          - type: f1
            value: 38.79874724974811
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
        metrics:
          - type: accuracy
            value: 37.632817753866846
          - type: f1
            value: 34.5071421221765
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
        metrics:
          - type: accuracy
            value: 45.12104909213182
          - type: f1
            value: 43.32946794837761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
        metrics:
          - type: accuracy
            value: 41.71486213853396
          - type: f1
            value: 39.500043810450016
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
        metrics:
          - type: accuracy
            value: 26.3315400134499
          - type: f1
            value: 24.213252556865477
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
        metrics:
          - type: accuracy
            value: 38.52051109616678
          - type: f1
            value: 37.07900132022834
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
        metrics:
          - type: accuracy
            value: 41.62071284465367
          - type: f1
            value: 39.89522566274897
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
        metrics:
          - type: accuracy
            value: 40.416946872898464
          - type: f1
            value: 38.43895125974106
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
        metrics:
          - type: accuracy
            value: 35.27908540685945
          - type: f1
            value: 33.8079098469717
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
        metrics:
          - type: accuracy
            value: 13.096839273705447
          - type: f1
            value: 10.24267220963294
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
        metrics:
          - type: accuracy
            value: 2.5622057834566236
          - type: f1
            value: 1.0615210594147622
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 10.537995965030262
          - type: f1
            value: 6.1708791409070995
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
        metrics:
          - type: accuracy
            value: 38.56086079354405
          - type: f1
            value: 35.015690080151465
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
        metrics:
          - type: accuracy
            value: 35.897780766644246
          - type: f1
            value: 33.90602650751521
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
        metrics:
          - type: accuracy
            value: 16.1768661735037
          - type: f1
            value: 15.713925259255651
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
        metrics:
          - type: accuracy
            value: 37.37726967047747
          - type: f1
            value: 35.652051460172906
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
        metrics:
          - type: accuracy
            value: 23.74243443174176
          - type: f1
            value: 19.255371431159425
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
        metrics:
          - type: accuracy
            value: 22.387357094821787
          - type: f1
            value: 19.094067620374382
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
        metrics:
          - type: accuracy
            value: 45.709482178883654
          - type: f1
            value: 43.61228850391169
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
        metrics:
          - type: accuracy
            value: 7.407531943510423
          - type: f1
            value: 3.8875366763112984
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
        metrics:
          - type: accuracy
            value: 27.61936785474109
          - type: f1
            value: 25.329931057423753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
        metrics:
          - type: accuracy
            value: 39.57969065232011
          - type: f1
            value: 37.39258432617311
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
        metrics:
          - type: accuracy
            value: 18.9778076664425
          - type: f1
            value: 17.620144033142864
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
        metrics:
          - type: accuracy
            value: 41.40215198386012
          - type: f1
            value: 38.06372767307641
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
        metrics:
          - type: accuracy
            value: 49.46872898453262
          - type: f1
            value: 46.90610579296604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
        metrics:
          - type: accuracy
            value: 52.07128446536652
          - type: f1
            value: 49.46913533778989
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
        metrics:
          - type: accuracy
            value: 35.50773369199731
          - type: f1
            value: 31.66524248503607
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
        metrics:
          - type: accuracy
            value: 74.57632817753867
          - type: f1
            value: 73.95638454943459
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
        metrics:
          - type: accuracy
            value: 50.743106926698054
          - type: f1
            value: 48.200939058933415
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
        metrics:
          - type: accuracy
            value: 29.004707464694015
          - type: f1
            value: 25.784529950699753
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
        metrics:
          - type: accuracy
            value: 45.80026899798252
          - type: f1
            value: 41.79459465764992
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
        metrics:
          - type: accuracy
            value: 53.7626092804304
          - type: f1
            value: 51.70423088264189
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
        metrics:
          - type: accuracy
            value: 25.682582380632148
          - type: f1
            value: 23.16790314457902
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
        metrics:
          - type: accuracy
            value: 23.022864828513782
          - type: f1
            value: 21.459384490296486
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
        metrics:
          - type: accuracy
            value: 44.08540685944856
          - type: f1
            value: 40.99340260145573
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
        metrics:
          - type: accuracy
            value: 14.83187626092804
          - type: f1
            value: 12.970096153546534
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
        metrics:
          - type: accuracy
            value: 44.34767989240081
          - type: f1
            value: 42.21539278376439
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
        metrics:
          - type: accuracy
            value: 43.08002689979825
          - type: f1
            value: 40.01184510787284
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
        metrics:
          - type: accuracy
            value: 51.71486213853396
          - type: f1
            value: 48.49232807960585
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
        metrics:
          - type: accuracy
            value: 36.748486886348346
          - type: f1
            value: 35.46615048175051
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
        metrics:
          - type: accuracy
            value: 44.56624075319435
          - type: f1
            value: 40.90741041356553
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
        metrics:
          - type: accuracy
            value: 14.83523873570948
          - type: f1
            value: 12.296442463483718
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
        metrics:
          - type: accuracy
            value: 9.754539340954944
          - type: f1
            value: 4.250353307219123
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
        metrics:
          - type: accuracy
            value: 8.315400134498994
          - type: f1
            value: 5.388118548783403
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
        metrics:
          - type: accuracy
            value: 25.719569603227978
          - type: f1
            value: 23.20523005165416
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
        metrics:
          - type: accuracy
            value: 42.74714189643578
          - type: f1
            value: 40.61202626722604
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
        metrics:
          - type: accuracy
            value: 7.252858103564222
          - type: f1
            value: 3.448646759763805
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
        metrics:
          - type: accuracy
            value: 29.034969737726968
          - type: f1
            value: 26.63495414552696
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
        metrics:
          - type: accuracy
            value: 44.64694014794889
          - type: f1
            value: 40.192107405242155
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
        metrics:
          - type: accuracy
            value: 10.067249495628783
          - type: f1
            value: 5.764723442216905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
        metrics:
          - type: accuracy
            value: 47.357094821788834
          - type: f1
            value: 44.596914417443266
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
        metrics:
          - type: accuracy
            value: 49.15265635507734
          - type: f1
            value: 46.15820727175712
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
        metrics:
          - type: accuracy
            value: 44.72091459314056
          - type: f1
            value: 42.88213581673335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
        metrics:
          - type: accuracy
            value: 52.99932750504372
          - type: f1
            value: 51.01176637403334
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
        metrics:
          - type: accuracy
            value: 49.97310020174849
          - type: f1
            value: 47.22673671303613
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
        metrics:
          - type: accuracy
            value: 28.74915938130464
          - type: f1
            value: 27.25888866616121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
        metrics:
          - type: accuracy
            value: 42.2595830531271
          - type: f1
            value: 41.261927156734785
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
        metrics:
          - type: accuracy
            value: 49.13584398117014
          - type: f1
            value: 47.08320600523055
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
        metrics:
          - type: accuracy
            value: 46.82582380632145
          - type: f1
            value: 43.40423470084757
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
        metrics:
          - type: accuracy
            value: 43.18426361802287
          - type: f1
            value: 39.815480841992084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
        metrics:
          - type: accuracy
            value: 19.3813046402152
          - type: f1
            value: 16.699966519668614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
        metrics:
          - type: accuracy
            value: 7.737054472091459
          - type: f1
            value: 3.8594459698077364
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
        metrics:
          - type: accuracy
            value: 18.31540013449899
          - type: f1
            value: 13.491482848005418
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
        metrics:
          - type: accuracy
            value: 48.305312710154666
          - type: f1
            value: 45.48790821413181
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
        metrics:
          - type: accuracy
            value: 41.792199058507066
          - type: f1
            value: 41.24552662271258
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
        metrics:
          - type: accuracy
            value: 24.462004034969738
          - type: f1
            value: 22.270575649981797
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
        metrics:
          - type: accuracy
            value: 40.94149293880296
          - type: f1
            value: 39.08540872012287
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
        metrics:
          - type: accuracy
            value: 33.17753866845998
          - type: f1
            value: 31.64001182395128
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
        metrics:
          - type: accuracy
            value: 31.15669132481506
          - type: f1
            value: 30.89137619124565
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 34.24621118290122
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 32.24202424478886
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
        metrics:
          - type: map
            value: 31.024522945679166
          - type: mrr
            value: 32.018722362966635
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 5.156000000000001
          - type: map_at_10
            value: 11.551
          - type: map_at_100
            value: 14.938
          - type: map_at_1000
            value: 16.366
          - type: map_at_3
            value: 8.118
          - type: map_at_5
            value: 9.918000000000001
          - type: mrr_at_1
            value: 42.415000000000006
          - type: mrr_at_10
            value: 51.571999999999996
          - type: mrr_at_100
            value: 52.126
          - type: mrr_at_1000
            value: 52.171
          - type: mrr_at_3
            value: 49.02
          - type: mrr_at_5
            value: 50.50599999999999
          - type: ndcg_at_1
            value: 39.783
          - type: ndcg_at_10
            value: 32.25
          - type: ndcg_at_100
            value: 30.089
          - type: ndcg_at_1000
            value: 38.86
          - type: ndcg_at_3
            value: 36.962
          - type: ndcg_at_5
            value: 35.292
          - type: precision_at_1
            value: 41.796
          - type: precision_at_10
            value: 24.272
          - type: precision_at_100
            value: 7.963000000000001
          - type: precision_at_1000
            value: 2.07
          - type: precision_at_3
            value: 35.397
          - type: precision_at_5
            value: 31.022
          - type: recall_at_1
            value: 5.156000000000001
          - type: recall_at_10
            value: 15.468000000000002
          - type: recall_at_100
            value: 31.049
          - type: recall_at_1000
            value: 63.148
          - type: recall_at_3
            value: 9.078999999999999
          - type: recall_at_5
            value: 12.275
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 23.672
          - type: map_at_10
            value: 38.452
          - type: map_at_100
            value: 39.705
          - type: map_at_1000
            value: 39.742
          - type: map_at_3
            value: 33.806999999999995
          - type: map_at_5
            value: 36.576
          - type: mrr_at_1
            value: 26.854
          - type: mrr_at_10
            value: 40.822
          - type: mrr_at_100
            value: 41.801
          - type: mrr_at_1000
            value: 41.827999999999996
          - type: mrr_at_3
            value: 36.824
          - type: mrr_at_5
            value: 39.312000000000005
          - type: ndcg_at_1
            value: 26.854
          - type: ndcg_at_10
            value: 46.469
          - type: ndcg_at_100
            value: 51.756
          - type: ndcg_at_1000
            value: 52.601
          - type: ndcg_at_3
            value: 37.623
          - type: ndcg_at_5
            value: 42.324
          - type: precision_at_1
            value: 26.854
          - type: precision_at_10
            value: 8.189
          - type: precision_at_100
            value: 1.11
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_3
            value: 17.718999999999998
          - type: precision_at_5
            value: 13.291
          - type: recall_at_1
            value: 23.672
          - type: recall_at_10
            value: 68.639
          - type: recall_at_100
            value: 91.546
          - type: recall_at_1000
            value: 97.794
          - type: recall_at_3
            value: 45.643
          - type: recall_at_5
            value: 56.523
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 69.667
          - type: map_at_10
            value: 83.83500000000001
          - type: map_at_100
            value: 84.479
          - type: map_at_1000
            value: 84.494
          - type: map_at_3
            value: 80.759
          - type: map_at_5
            value: 82.657
          - type: mrr_at_1
            value: 80.46
          - type: mrr_at_10
            value: 86.83800000000001
          - type: mrr_at_100
            value: 86.944
          - type: mrr_at_1000
            value: 86.945
          - type: mrr_at_3
            value: 85.815
          - type: mrr_at_5
            value: 86.508
          - type: ndcg_at_1
            value: 80.46
          - type: ndcg_at_10
            value: 87.752
          - type: ndcg_at_100
            value: 88.973
          - type: ndcg_at_1000
            value: 89.072
          - type: ndcg_at_3
            value: 84.735
          - type: ndcg_at_5
            value: 86.371
          - type: precision_at_1
            value: 80.46
          - type: precision_at_10
            value: 13.452
          - type: precision_at_100
            value: 1.532
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.187
          - type: precision_at_5
            value: 24.5
          - type: recall_at_1
            value: 69.667
          - type: recall_at_10
            value: 95.329
          - type: recall_at_100
            value: 99.52
          - type: recall_at_1000
            value: 99.991
          - type: recall_at_3
            value: 86.696
          - type: recall_at_5
            value: 91.346
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 51.177545122684634
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 54.804652123126985
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 5.162
          - type: map_at_10
            value: 13.168
          - type: map_at_100
            value: 15.766
          - type: map_at_1000
            value: 16.136
          - type: map_at_3
            value: 9.180000000000001
          - type: map_at_5
            value: 11.205
          - type: mrr_at_1
            value: 25.5
          - type: mrr_at_10
            value: 36.617
          - type: mrr_at_100
            value: 37.814
          - type: mrr_at_1000
            value: 37.86
          - type: mrr_at_3
            value: 33.15
          - type: mrr_at_5
            value: 35.29
          - type: ndcg_at_1
            value: 25.5
          - type: ndcg_at_10
            value: 21.818
          - type: ndcg_at_100
            value: 31.302999999999997
          - type: ndcg_at_1000
            value: 37.175000000000004
          - type: ndcg_at_3
            value: 20.358999999999998
          - type: ndcg_at_5
            value: 18.169
          - type: precision_at_1
            value: 25.5
          - type: precision_at_10
            value: 11.32
          - type: precision_at_100
            value: 2.495
          - type: precision_at_1000
            value: 0.38899999999999996
          - type: precision_at_3
            value: 18.833
          - type: precision_at_5
            value: 16.06
          - type: recall_at_1
            value: 5.162
          - type: recall_at_10
            value: 22.932
          - type: recall_at_100
            value: 50.598
          - type: recall_at_1000
            value: 79.053
          - type: recall_at_3
            value: 11.442
          - type: recall_at_5
            value: 16.272000000000002
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 84.73414727754201
          - type: cos_sim_spearman
            value: 79.3180820145488
          - type: euclidean_pearson
            value: 81.33251162244008
          - type: euclidean_spearman
            value: 79.31808410123591
          - type: manhattan_pearson
            value: 81.24535628962194
          - type: manhattan_spearman
            value: 79.18643136990889
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 82.89241604274538
          - type: cos_sim_spearman
            value: 73.08329002776462
          - type: euclidean_pearson
            value: 78.75856902522398
          - type: euclidean_spearman
            value: 73.0808569122323
          - type: manhattan_pearson
            value: 78.81165127939924
          - type: manhattan_spearman
            value: 73.13358160467396
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 81.65439991719452
          - type: cos_sim_spearman
            value: 82.13398891011764
          - type: euclidean_pearson
            value: 81.63807492339613
          - type: euclidean_spearman
            value: 82.13398891011764
          - type: manhattan_pearson
            value: 81.5983078333819
          - type: manhattan_spearman
            value: 82.11893098949203
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 81.66945263546415
          - type: cos_sim_spearman
            value: 76.7342099954029
          - type: euclidean_pearson
            value: 79.98454905286438
          - type: euclidean_spearman
            value: 76.73420731947648
          - type: manhattan_pearson
            value: 79.98121513026915
          - type: manhattan_spearman
            value: 76.74818574618494
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 84.80085528616004
          - type: cos_sim_spearman
            value: 85.57752600637704
          - type: euclidean_pearson
            value: 84.88803602633503
          - type: euclidean_spearman
            value: 85.57753174543699
          - type: manhattan_pearson
            value: 84.77107707460819
          - type: manhattan_spearman
            value: 85.4531691739887
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 79.32666585707851
          - type: cos_sim_spearman
            value: 80.22692417222228
          - type: euclidean_pearson
            value: 79.847799005588
          - type: euclidean_spearman
            value: 80.22692417222228
          - type: manhattan_pearson
            value: 79.86640649752613
          - type: manhattan_spearman
            value: 80.25939898948658
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 36.97351108396674
          - type: cos_sim_spearman
            value: 43.373159642451846
          - type: euclidean_pearson
            value: 42.343251342924724
          - type: euclidean_spearman
            value: 43.37383732365708
          - type: manhattan_pearson
            value: 42.21420013714062
          - type: manhattan_spearman
            value: 43.27093471564943
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 54.25766812232355
          - type: cos_sim_spearman
            value: 58.70907752953121
          - type: euclidean_pearson
            value: 57.74925638384565
          - type: euclidean_spearman
            value: 58.70907752953121
          - type: manhattan_pearson
            value: 57.53107164585081
          - type: manhattan_spearman
            value: 58.18399071690873
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 2.000902150291317
          - type: cos_sim_spearman
            value: 0.5442319876381565
          - type: euclidean_pearson
            value: 2.0061692624223886
          - type: euclidean_spearman
            value: 0.5442319876381565
          - type: manhattan_pearson
            value: 1.6005243901065973
          - type: manhattan_spearman
            value: 0.8261501538578374
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 31.103076250241756
          - type: cos_sim_spearman
            value: 27.538399556865983
          - type: euclidean_pearson
            value: 31.299966953719917
          - type: euclidean_spearman
            value: 27.538399556865983
          - type: manhattan_pearson
            value: 29.252983940152795
          - type: manhattan_spearman
            value: 24.545142053308506
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 88.92662843843466
          - type: cos_sim_spearman
            value: 88.6282754793921
          - type: euclidean_pearson
            value: 88.9663425476392
          - type: euclidean_spearman
            value: 88.6282754793921
          - type: manhattan_pearson
            value: 89.04213757202741
          - type: manhattan_spearman
            value: 88.8029452722001
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 6.699439791440673
          - type: cos_sim_spearman
            value: 0.42741621491041054
          - type: euclidean_pearson
            value: 7.0939749740816485
          - type: euclidean_spearman
            value: 0.42741621491041054
          - type: manhattan_pearson
            value: 3.7604205840813005
          - type: manhattan_spearman
            value: -1.7995925853478083
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 22.332768127048812
          - type: cos_sim_spearman
            value: 22.011862055263386
          - type: euclidean_pearson
            value: 22.275743114886957
          - type: euclidean_spearman
            value: 22.011862055263386
          - type: manhattan_pearson
            value: 21.382471306976754
          - type: manhattan_spearman
            value: 20.5220742340821
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 78.59529102081041
          - type: cos_sim_spearman
            value: 78.36515013988296
          - type: euclidean_pearson
            value: 79.6578967101581
          - type: euclidean_spearman
            value: 78.36388790924713
          - type: manhattan_pearson
            value: 79.54080618487365
          - type: manhattan_spearman
            value: 78.03366107978795
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 34.19498070710533
          - type: cos_sim_spearman
            value: 30.702559767030923
          - type: euclidean_pearson
            value: 34.28061977250095
          - type: euclidean_spearman
            value: 30.702559767030923
          - type: manhattan_pearson
            value: 34.8122111793038
          - type: manhattan_spearman
            value: 31.40796587790667
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 25.84186641167081
          - type: cos_sim_spearman
            value: 24.28452119168039
          - type: euclidean_pearson
            value: 25.866557000478302
          - type: euclidean_spearman
            value: 24.28452119168039
          - type: manhattan_pearson
            value: 24.273876016721925
          - type: manhattan_spearman
            value: 23.66844883927423
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 31.68262883322153
          - type: cos_sim_spearman
            value: 24.508086225784982
          - type: euclidean_pearson
            value: 32.07775246994894
          - type: euclidean_spearman
            value: 24.508086225784982
          - type: manhattan_pearson
            value: 33.20196765495327
          - type: manhattan_spearman
            value: 27.383641505403627
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 66.82398288868168
          - type: cos_sim_spearman
            value: 65.6697261994716
          - type: euclidean_pearson
            value: 66.84746542331361
          - type: euclidean_spearman
            value: 65.6697261994716
          - type: manhattan_pearson
            value: 66.89947196080837
          - type: manhattan_spearman
            value: 65.61734245758937
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 18.956935297479266
          - type: cos_sim_spearman
            value: 22.525438836468805
          - type: euclidean_pearson
            value: 13.676185827963197
          - type: euclidean_spearman
            value: 22.525438836468805
          - type: manhattan_pearson
            value: 13.749488574260106
          - type: manhattan_spearman
            value: 22.49725541226794
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 43.159634114474954
          - type: cos_sim_spearman
            value: 43.97530387822291
          - type: euclidean_pearson
            value: 42.45018759035119
          - type: euclidean_spearman
            value: 43.97530387822291
          - type: manhattan_pearson
            value: 43.88212906018782
          - type: manhattan_spearman
            value: 44.2344991447187
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 2.9506287366804567
          - type: cos_sim_spearman
            value: 19.21860340477442
          - type: euclidean_pearson
            value: 6.306031200912426
          - type: euclidean_spearman
            value: 19.21860340477442
          - type: manhattan_pearson
            value: 5.968058806485322
          - type: manhattan_spearman
            value: 18.496966556101356
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 17.494702940326327
          - type: cos_sim_spearman
            value: 21.600665598855933
          - type: euclidean_pearson
            value: 19.949878763475876
          - type: euclidean_spearman
            value: 21.600665598855933
          - type: manhattan_pearson
            value: 20.562737979747386
          - type: manhattan_spearman
            value: 21.548415116687096
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 21.455304899947475
          - type: cos_sim_spearman
            value: 17.54247841644246
          - type: euclidean_pearson
            value: 19.954769470444862
          - type: euclidean_spearman
            value: 17.54247841644246
          - type: manhattan_pearson
            value: 20.491628523649304
          - type: manhattan_spearman
            value: 17.984509706975498
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 5.725870260172754
          - type: cos_sim_spearman
            value: 11.187514830423046
          - type: euclidean_pearson
            value: 5.917124931676964
          - type: euclidean_spearman
            value: 11.187514830423046
          - type: manhattan_pearson
            value: 6.374841892742465
          - type: manhattan_spearman
            value: 10.769670996439327
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 23.644675903928903
          - type: cos_sim_spearman
            value: 33.1476054705555
          - type: euclidean_pearson
            value: 27.486723401317015
          - type: euclidean_spearman
            value: 33.14559867176513
          - type: manhattan_pearson
            value: 28.905530853992335
          - type: manhattan_spearman
            value: 32.97179552695711
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 68.19096417445061
          - type: cos_sim_spearman
            value: 69.51402658537921
          - type: euclidean_pearson
            value: 65.89836450895854
          - type: euclidean_spearman
            value: 69.51402658537921
          - type: manhattan_pearson
            value: 65.95918282706997
          - type: manhattan_spearman
            value: 69.66631782067878
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 47.02727261965111
          - type: cos_sim_spearman
            value: 42.85739641224728
          - type: euclidean_pearson
            value: 47.55857919944314
          - type: euclidean_spearman
            value: 42.85739641224728
          - type: manhattan_pearson
            value: 50.24947623020984
          - type: manhattan_spearman
            value: 44.34581665268886
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 52.54253509229287
          - type: cos_sim_spearman
            value: 53.98864875959218
          - type: euclidean_pearson
            value: 52.771474843725464
          - type: euclidean_spearman
            value: 53.98864875959218
          - type: manhattan_pearson
            value: 53.39728391060008
          - type: manhattan_spearman
            value: 54.65413858996554
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 48.017241684543656
          - type: cos_sim_spearman
            value: 47.47536430344332
          - type: euclidean_pearson
            value: 46.94098755337956
          - type: euclidean_spearman
            value: 47.47536430344332
          - type: manhattan_pearson
            value: 47.27489495136295
          - type: manhattan_spearman
            value: 47.75408075281176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 43.16723254329198
          - type: cos_sim_spearman
            value: 42.6695846628273
          - type: euclidean_pearson
            value: 43.37634781317223
          - type: euclidean_spearman
            value: 42.6695846628273
          - type: manhattan_pearson
            value: 46.43632735525556
          - type: manhattan_spearman
            value: 44.399080708250175
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 42.614472380988
          - type: cos_sim_spearman
            value: 44.386615916921755
          - type: euclidean_pearson
            value: 42.602921485579536
          - type: euclidean_spearman
            value: 44.386615916921755
          - type: manhattan_pearson
            value: 39.57742966805997
          - type: manhattan_spearman
            value: 41.12937281700849
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 41.19025498086497
          - type: cos_sim_spearman
            value: 40.70511339346037
          - type: euclidean_pearson
            value: 41.757361379987536
          - type: euclidean_spearman
            value: 40.70511339346037
          - type: manhattan_pearson
            value: 42.12654868854391
          - type: manhattan_spearman
            value: 40.16977290096036
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 42.58930629526249
          - type: cos_sim_spearman
            value: 43.51970789091437
          - type: euclidean_pearson
            value: 42.79780567751299
          - type: euclidean_spearman
            value: 43.51970789091437
          - type: manhattan_pearson
            value: 43.11190678703615
          - type: manhattan_spearman
            value: 43.921331076552214
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 9.14354524166508
          - type: cos_sim_spearman
            value: 1.632087485480262
          - type: euclidean_pearson
            value: 9.808059926397586
          - type: euclidean_spearman
            value: 1.632087485480262
          - type: manhattan_pearson
            value: 15.655877492684972
          - type: manhattan_spearman
            value: 9.084260532390138
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 16.116974803470246
          - type: cos_sim_spearman
            value: 16.903085094570333
          - type: euclidean_pearson
            value: 16.277560475636694
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 20.321632312194925
          - type: manhattan_spearman
            value: 28.17180849095055
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 83.75945741541354
          - type: cos_sim_spearman
            value: 83.08944658809418
          - type: euclidean_pearson
            value: 83.5587988852494
          - type: euclidean_spearman
            value: 83.08938533093635
          - type: manhattan_pearson
            value: 83.56896467262781
          - type: manhattan_spearman
            value: 83.11516183577004
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
        metrics:
          - type: map
            value: 87.20127714147824
          - type: mrr
            value: 96.44415315983943
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 47.483
          - type: map_at_10
            value: 57.18600000000001
          - type: map_at_100
            value: 57.863
          - type: map_at_1000
            value: 57.901
          - type: map_at_3
            value: 53.909
          - type: map_at_5
            value: 55.57299999999999
          - type: mrr_at_1
            value: 50
          - type: mrr_at_10
            value: 58.607
          - type: mrr_at_100
            value: 59.169000000000004
          - type: mrr_at_1000
            value: 59.207
          - type: mrr_at_3
            value: 56.056
          - type: mrr_at_5
            value: 57.422
          - type: ndcg_at_1
            value: 50
          - type: ndcg_at_10
            value: 62.639
          - type: ndcg_at_100
            value: 65.549
          - type: ndcg_at_1000
            value: 66.497
          - type: ndcg_at_3
            value: 56.602
          - type: ndcg_at_5
            value: 59.270999999999994
          - type: precision_at_1
            value: 50
          - type: precision_at_10
            value: 8.833
          - type: precision_at_100
            value: 1.0370000000000001
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 22.222
          - type: precision_at_5
            value: 15
          - type: recall_at_1
            value: 47.483
          - type: recall_at_10
            value: 78.233
          - type: recall_at_100
            value: 91.167
          - type: recall_at_1000
            value: 98.333
          - type: recall_at_3
            value: 61.956
          - type: recall_at_5
            value: 68.43900000000001
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 99.72871287128713
          - type: cos_sim_ap
            value: 92.44554820122362
          - type: cos_sim_f1
            value: 85.89083419155509
          - type: cos_sim_precision
            value: 88.53503184713377
          - type: cos_sim_recall
            value: 83.39999999999999
          - type: dot_accuracy
            value: 99.72871287128713
          - type: dot_ap
            value: 92.44554820122363
          - type: dot_f1
            value: 85.89083419155509
          - type: dot_precision
            value: 88.53503184713377
          - type: dot_recall
            value: 83.39999999999999
          - type: euclidean_accuracy
            value: 99.72871287128713
          - type: euclidean_ap
            value: 92.44554820122362
          - type: euclidean_f1
            value: 85.89083419155509
          - type: euclidean_precision
            value: 88.53503184713377
          - type: euclidean_recall
            value: 83.39999999999999
          - type: manhattan_accuracy
            value: 99.73267326732673
          - type: manhattan_ap
            value: 92.57860510428624
          - type: manhattan_f1
            value: 86.20170597089813
          - type: manhattan_precision
            value: 86.5055387713998
          - type: manhattan_recall
            value: 85.9
          - type: max_accuracy
            value: 99.73267326732673
          - type: max_ap
            value: 92.57860510428624
          - type: max_f1
            value: 86.20170597089813
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 53.04887987709521
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 33.133116286225686
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
        metrics:
          - type: map
            value: 51.4732035634667
          - type: mrr
            value: 52.263880931160344
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
        metrics:
          - type: cos_sim_pearson
            value: 29.365093191497525
          - type: cos_sim_spearman
            value: 27.90160600683062
          - type: dot_pearson
            value: 29.36509564650472
          - type: dot_spearman
            value: 27.90160600683062
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 0.17600000000000002
          - type: map_at_10
            value: 1.164
          - type: map_at_100
            value: 6.048
          - type: map_at_1000
            value: 14.913000000000002
          - type: map_at_3
            value: 0.44799999999999995
          - type: map_at_5
            value: 0.658
          - type: mrr_at_1
            value: 64
          - type: mrr_at_10
            value: 73.538
          - type: mrr_at_100
            value: 73.752
          - type: mrr_at_1000
            value: 73.752
          - type: mrr_at_3
            value: 70.667
          - type: mrr_at_5
            value: 72.467
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 50.815999999999995
          - type: ndcg_at_100
            value: 37.662
          - type: ndcg_at_1000
            value: 35.907
          - type: ndcg_at_3
            value: 54.112
          - type: ndcg_at_5
            value: 51.19200000000001
          - type: precision_at_1
            value: 64
          - type: precision_at_10
            value: 55.400000000000006
          - type: precision_at_100
            value: 38.48
          - type: precision_at_1000
            value: 16.012
          - type: precision_at_3
            value: 57.99999999999999
          - type: precision_at_5
            value: 54.800000000000004
          - type: recall_at_1
            value: 0.17600000000000002
          - type: recall_at_10
            value: 1.435
          - type: recall_at_100
            value: 9.122
          - type: recall_at_1000
            value: 34.378
          - type: recall_at_3
            value: 0.47400000000000003
          - type: recall_at_5
            value: 0.736
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
        metrics:
          - type: map_at_1
            value: 1.813
          - type: map_at_10
            value: 6.632000000000001
          - type: map_at_100
            value: 11.485
          - type: map_at_1000
            value: 13.031
          - type: map_at_3
            value: 3.5069999999999997
          - type: map_at_5
            value: 5.183
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 33.035
          - type: mrr_at_100
            value: 34.117
          - type: mrr_at_1000
            value: 34.168
          - type: mrr_at_3
            value: 27.551
          - type: mrr_at_5
            value: 31.326999999999998
          - type: ndcg_at_1
            value: 15.306000000000001
          - type: ndcg_at_10
            value: 17.224
          - type: ndcg_at_100
            value: 29.287999999999997
          - type: ndcg_at_1000
            value: 41.613
          - type: ndcg_at_3
            value: 15.786
          - type: ndcg_at_5
            value: 16.985
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 15.714
          - type: precision_at_100
            value: 6.4079999999999995
          - type: precision_at_1000
            value: 1.451
          - type: precision_at_3
            value: 17.687
          - type: precision_at_5
            value: 18.776
          - type: recall_at_1
            value: 1.813
          - type: recall_at_10
            value: 12.006
          - type: recall_at_100
            value: 41.016999999999996
          - type: recall_at_1000
            value: 78.632
          - type: recall_at_3
            value: 4.476999999999999
          - type: recall_at_5
            value: 7.904999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 67.4694
          - type: ap
            value: 12.602604676283388
          - type: f1
            value: 51.82471949507483
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 54.25297113752122
          - type: f1
            value: 54.50148311546008
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
        metrics:
          - type: v_measure
            value: 47.467044776612376
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 84.78869881385229
          - type: cos_sim_ap
            value: 70.01722500181003
          - type: cos_sim_f1
            value: 65.943384461903
          - type: cos_sim_precision
            value: 62.52069047056041
          - type: cos_sim_recall
            value: 69.76253298153034
          - type: dot_accuracy
            value: 84.78869881385229
          - type: dot_ap
            value: 70.01721947474665
          - type: dot_f1
            value: 65.943384461903
          - type: dot_precision
            value: 62.52069047056041
          - type: dot_recall
            value: 69.76253298153034
          - type: euclidean_accuracy
            value: 84.78869881385229
          - type: euclidean_ap
            value: 70.01721811552584
          - type: euclidean_f1
            value: 65.943384461903
          - type: euclidean_precision
            value: 62.52069047056041
          - type: euclidean_recall
            value: 69.76253298153034
          - type: manhattan_accuracy
            value: 84.68140907194373
          - type: manhattan_ap
            value: 69.90669388421887
          - type: manhattan_f1
            value: 66.00842865743527
          - type: manhattan_precision
            value: 60.70874861572536
          - type: manhattan_recall
            value: 72.32189973614776
          - type: max_accuracy
            value: 84.78869881385229
          - type: max_ap
            value: 70.01722500181003
          - type: max_f1
            value: 66.00842865743527
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
        metrics:
          - type: cos_sim_accuracy
            value: 88.4367601971514
          - type: cos_sim_ap
            value: 84.77318195783158
          - type: cos_sim_f1
            value: 77.13502703503444
          - type: cos_sim_precision
            value: 74.31140288283146
          - type: cos_sim_recall
            value: 80.18170619032954
          - type: dot_accuracy
            value: 88.4367601971514
          - type: dot_ap
            value: 84.77317449778201
          - type: dot_f1
            value: 77.13502703503444
          - type: dot_precision
            value: 74.31140288283146
          - type: dot_recall
            value: 80.18170619032954
          - type: euclidean_accuracy
            value: 88.4367601971514
          - type: euclidean_ap
            value: 84.77314948093711
          - type: euclidean_f1
            value: 77.13502703503444
          - type: euclidean_precision
            value: 74.31140288283146
          - type: euclidean_recall
            value: 80.18170619032954
          - type: manhattan_accuracy
            value: 88.43287926417511
          - type: manhattan_ap
            value: 84.71097141640011
          - type: manhattan_f1
            value: 77.08356453223837
          - type: manhattan_precision
            value: 74.18298326806692
          - type: manhattan_recall
            value: 80.2202032645519
          - type: max_accuracy
            value: 88.4367601971514
          - type: max_ap
            value: 84.77318195783158
          - type: max_f1
            value: 77.13502703503444

all-MiniLM-L12-v2

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net


Background

The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained microsoft/MiniLM-L12-H384-uncased model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.

We developped this model during the Community week using JAX/Flax for NLP & CV, organized by Hugging Face. We developped this model as part of the project: Train the Best Sentence Embedding Model Ever with 1B Training Pairs. We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.

Intended uses

Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.

By default, input text longer than 256 word pieces is truncated.

Training procedure

Pre-training

We use the pretrained microsoft/MiniLM-L12-H384-uncased model. Please refer to the model card for more detailed information about the pre-training procedure.

Fine-tuning

We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs.

Hyper parameters

We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: train_script.py.

Training data

We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the data_config.json file.

Dataset Paper Number of training tuples
Reddit comments (2015-2018) paper 726,484,430
S2ORC Citation pairs (Abstracts) paper 116,288,806
WikiAnswers Duplicate question pairs paper 77,427,422
PAQ (Question, Answer) pairs paper 64,371,441
S2ORC Citation pairs (Titles) paper 52,603,982
S2ORC (Title, Abstract) paper 41,769,185
Stack Exchange (Title, Body) pairs - 25,316,456
Stack Exchange (Title+Body, Answer) pairs - 21,396,559
Stack Exchange (Title, Answer) pairs - 21,396,559
MS MARCO triplets paper 9,144,553
GOOAQ: Open Question Answering with Diverse Answer Types paper 3,012,496
Yahoo Answers (Title, Answer) paper 1,198,260
Code Search - 1,151,414
COCO Image captions paper 828,395
SPECTER citation triplets paper 684,100
Yahoo Answers (Question, Answer) paper 681,164
Yahoo Answers (Title, Question) paper 659,896
SearchQA paper 582,261
Eli5 paper 325,475
Flickr 30k paper 317,695
Stack Exchange Duplicate questions (titles) 304,525
AllNLI (SNLI and MultiNLI paper SNLI, paper MultiNLI 277,230
Stack Exchange Duplicate questions (bodies) 250,519
Stack Exchange Duplicate questions (titles+bodies) 250,460
Sentence Compression paper 180,000
Wikihow paper 128,542
Altlex paper 112,696
Quora Question Triplets - 103,663
Simple Wikipedia paper 102,225
Natural Questions (NQ) paper 100,231
SQuAD2.0 paper 87,599
TriviaQA - 73,346
Total 1,170,060,424