|
---
|
|
library_name: sentence-transformers
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- feature-extraction
|
|
- sentence-similarity
|
|
- transformers
|
|
|
|
---
|
|
|
|
# sentence-transformers-testing/stsb-bert-tiny-safetensors
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
|
|
|
<!--- Describe your model here -->
|
|
|
|
## Usage (Sentence-Transformers)
|
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
|
```
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can use the model like this:
|
|
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
|
model = SentenceTransformer('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings)
|
|
```
|
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers)
|
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
|
|
|
```python
|
|
from transformers import AutoTokenizer, AutoModel
|
|
import torch
|
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging
|
|
def mean_pooling(model_output, attention_mask):
|
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
|
|
|
# Sentences we want sentence embeddings for
|
|
sentences = ['This is an example sentence', 'Each sentence is converted']
|
|
|
|
# Load model from HuggingFace Hub
|
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
|
model = AutoModel.from_pretrained('sentence-transformers-testing/stsb-bert-tiny-safetensors')
|
|
|
|
# Tokenize sentences
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
# Compute token embeddings
|
|
with torch.no_grad():
|
|
model_output = model(**encoded_input)
|
|
|
|
# Perform pooling. In this case, mean pooling.
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
|
print("Sentence embeddings:")
|
|
print(sentence_embeddings)
|
|
```
|
|
|
|
|
|
|
|
## Evaluation Results
|
|
|
|
<!--- Describe how your model was evaluated -->
|
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers-testing/stsb-bert-tiny-safetensors)
|
|
|
|
|
|
## Training
|
|
The model was trained with the parameters:
|
|
|
|
**DataLoader**:
|
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
|
|
```
|
|
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
|
```
|
|
|
|
**Loss**:
|
|
|
|
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
|
|
|
Parameters of the fit()-Method:
|
|
```
|
|
{
|
|
"epochs": 10,
|
|
"evaluation_steps": 1000,
|
|
"evaluator": "NoneType",
|
|
"max_grad_norm": 1,
|
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
"optimizer_params": {
|
|
"lr": 8e-05
|
|
},
|
|
"scheduler": "WarmupLinear",
|
|
"steps_per_epoch": null,
|
|
"warmup_steps": 36,
|
|
"weight_decay": 0.01
|
|
}
|
|
```
|
|
|
|
|
|
## Full Model Architecture
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
|
)
|
|
```
|
|
|
|
## Citing & Authors
|
|
|
|
<!--- Describe where people can find more information --> |