Create train_script.py
Browse files- train_script.py +111 -0
train_script.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from typing import Dict
|
3 |
+
import datasets
|
4 |
+
from datasets import Dataset
|
5 |
+
from sentence_transformers import (
|
6 |
+
SentenceTransformer,
|
7 |
+
SentenceTransformerTrainer,
|
8 |
+
losses,
|
9 |
+
evaluation,
|
10 |
+
SentenceTransformerTrainingArguments
|
11 |
+
)
|
12 |
+
from sentence_transformers.models import Transformer, Pooling, Dense, Normalize
|
13 |
+
|
14 |
+
def to_triplets(dataset):
|
15 |
+
premises = defaultdict(dict)
|
16 |
+
for sample in dataset:
|
17 |
+
premises[sample["premise"]][sample["label"]] = sample["hypothesis"]
|
18 |
+
queries = []
|
19 |
+
positives = []
|
20 |
+
negatives = []
|
21 |
+
for premise, sentences in premises.items():
|
22 |
+
if 0 in sentences and 2 in sentences:
|
23 |
+
queries.append(premise)
|
24 |
+
positives.append(sentences[0]) # <- entailment
|
25 |
+
negatives.append(sentences[2]) # <- contradiction
|
26 |
+
return Dataset.from_dict({
|
27 |
+
"anchor": queries,
|
28 |
+
"positive": positives,
|
29 |
+
"negative": negatives,
|
30 |
+
})
|
31 |
+
|
32 |
+
snli_ds = datasets.load_dataset("snli")
|
33 |
+
snli_ds = datasets.DatasetDict({
|
34 |
+
"train": to_triplets(snli_ds["train"]),
|
35 |
+
"validation": to_triplets(snli_ds["validation"]),
|
36 |
+
"test": to_triplets(snli_ds["test"]),
|
37 |
+
})
|
38 |
+
multi_nli_ds = datasets.load_dataset("multi_nli")
|
39 |
+
multi_nli_ds = datasets.DatasetDict({
|
40 |
+
"train": to_triplets(multi_nli_ds["train"]),
|
41 |
+
"validation_matched": to_triplets(multi_nli_ds["validation_matched"]),
|
42 |
+
})
|
43 |
+
|
44 |
+
all_nli_ds = datasets.DatasetDict({
|
45 |
+
"train": datasets.concatenate_datasets([snli_ds["train"], multi_nli_ds["train"]]),#.select(range(10000)),
|
46 |
+
"validation": datasets.concatenate_datasets([snli_ds["validation"], multi_nli_ds["validation_matched"]]),#.select(range(1000)),
|
47 |
+
"test": snli_ds["test"]
|
48 |
+
})
|
49 |
+
|
50 |
+
stsb_dev = datasets.load_dataset("mteb/stsbenchmark-sts", split="validation")
|
51 |
+
stsb_test = datasets.load_dataset("mteb/stsbenchmark-sts", split="test")
|
52 |
+
|
53 |
+
training_args = SentenceTransformerTrainingArguments(
|
54 |
+
output_dir="checkpoints",
|
55 |
+
num_train_epochs=1,
|
56 |
+
seed=42,
|
57 |
+
per_device_train_batch_size=256,
|
58 |
+
per_device_eval_batch_size=256,
|
59 |
+
learning_rate=2e-5,
|
60 |
+
warmup_ratio=0.1,
|
61 |
+
bf16=True,
|
62 |
+
logging_steps=100,
|
63 |
+
eval_strategy="steps",
|
64 |
+
eval_steps=100,
|
65 |
+
save_steps=100,
|
66 |
+
save_total_limit=2,
|
67 |
+
metric_for_best_model="sts-dev_spearman_cosine",
|
68 |
+
greater_is_better=True,
|
69 |
+
)
|
70 |
+
|
71 |
+
transformer = Transformer("prajjwal1/bert-tiny", max_seq_length=384)
|
72 |
+
pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean")
|
73 |
+
dense = Dense(128, 256)
|
74 |
+
normalize = Normalize()
|
75 |
+
model = SentenceTransformer(modules=[transformer, pooling, dense, normalize])
|
76 |
+
# Ensure all tensors in the model are contiguous
|
77 |
+
for param in model.parameters():
|
78 |
+
param.data = param.data.contiguous()
|
79 |
+
|
80 |
+
loss = losses.MultipleNegativesRankingLoss(model)
|
81 |
+
# loss = losses.MatryoshkaLoss(model, loss, [256, 128, 64, 32, 16, 8])
|
82 |
+
|
83 |
+
dev_evaluator = evaluation.EmbeddingSimilarityEvaluator(
|
84 |
+
stsb_dev["sentence1"],
|
85 |
+
stsb_dev["sentence2"],
|
86 |
+
[score / 5 for score in stsb_dev["score"]],
|
87 |
+
main_similarity=evaluation.SimilarityFunction.COSINE,
|
88 |
+
name="sts-dev",
|
89 |
+
)
|
90 |
+
|
91 |
+
trainer = SentenceTransformerTrainer(
|
92 |
+
model=model,
|
93 |
+
evaluator=dev_evaluator,
|
94 |
+
args=training_args,
|
95 |
+
train_dataset=all_nli_ds["train"],
|
96 |
+
eval_dataset=all_nli_ds["validation"],
|
97 |
+
loss=loss,
|
98 |
+
)
|
99 |
+
trainer.train()
|
100 |
+
|
101 |
+
test_evaluator = evaluation.EmbeddingSimilarityEvaluator(
|
102 |
+
stsb_test["sentence1"],
|
103 |
+
stsb_test["sentence2"],
|
104 |
+
[score / 5 for score in stsb_test["score"]],
|
105 |
+
main_similarity=evaluation.SimilarityFunction.COSINE,
|
106 |
+
name="sts-test",
|
107 |
+
)
|
108 |
+
results = test_evaluator(model)
|
109 |
+
|
110 |
+
breakpoint()
|
111 |
+
model.push_to_hub("sentence-transformers-testing/all-nli-bert-tiny-dense", private=True)
|