tomaarsen HF staff commited on
Commit
247f25d
1 Parent(s): ac3103a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 128,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 128, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14cb75a0da4e4e40b794db41312104d5cceb3f8426d5548209e8ba0d33f3b979
3
+ size 132256
README.md ADDED
@@ -0,0 +1,545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: prajjwal1/bert-tiny
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:277277
24
+ - loss:MultipleNegativesRankingLoss
25
+ widget:
26
+ - source_sentence: Tall man being stopped by an officer.
27
+ sentences:
28
+ - The man is short.
29
+ - There is a tall man.
30
+ - Male in brown leather jacket and tight black slacks, looking down at his phone
31
+ - source_sentence: Man relaxing on a bench at the bus stop.
32
+ sentences:
33
+ - The man stood next to the bench.
34
+ - The man relaxes on a bench.
35
+ - A dog running outside.
36
+ - source_sentence: Police officer with riot shield stands in front of crowd.
37
+ sentences:
38
+ - A police officer teaches two children something.
39
+ - The kid is at the beach.
40
+ - A police officer stands in front of a crowd.
41
+ - source_sentence: A woman in a red shirt and blue jeans is walking outside while
42
+ a man in a khaki jacket is right behind her.
43
+ sentences:
44
+ - A man and a woman are walking outside.
45
+ - A woman is outside.
46
+ - A man in an army jacket is following a woman in a pink dress.
47
+ - source_sentence: A waitress with a pink shirt and black pants walking through a
48
+ restaurant carrying bowls of soup.
49
+ sentences:
50
+ - Nobody has pants
51
+ - A person with pants
52
+ - a young kid jumps into the water
53
+ co2_eq_emissions:
54
+ emissions: 1.9590621986924506
55
+ energy_consumed: 0.005040010596015587
56
+ source: codecarbon
57
+ training_type: fine-tuning
58
+ on_cloud: false
59
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
60
+ ram_total_size: 31.777088165283203
61
+ hours_used: 0.029
62
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
63
+ model-index:
64
+ - name: SentenceTransformer based on prajjwal1/bert-tiny
65
+ results:
66
+ - task:
67
+ type: semantic-similarity
68
+ name: Semantic Similarity
69
+ dataset:
70
+ name: sts dev
71
+ type: sts-dev
72
+ metrics:
73
+ - type: pearson_cosine
74
+ value: 0.7526013757467193
75
+ name: Pearson Cosine
76
+ - type: spearman_cosine
77
+ value: 0.7614153421868329
78
+ name: Spearman Cosine
79
+ - type: pearson_manhattan
80
+ value: 0.7622035611835871
81
+ name: Pearson Manhattan
82
+ - type: spearman_manhattan
83
+ value: 0.7597498090089608
84
+ name: Spearman Manhattan
85
+ - type: pearson_euclidean
86
+ value: 0.7632410201154781
87
+ name: Pearson Euclidean
88
+ - type: spearman_euclidean
89
+ value: 0.7614153421868329
90
+ name: Spearman Euclidean
91
+ - type: pearson_dot
92
+ value: 0.7526013835604672
93
+ name: Pearson Dot
94
+ - type: spearman_dot
95
+ value: 0.7614153421868329
96
+ name: Spearman Dot
97
+ - type: pearson_max
98
+ value: 0.7632410201154781
99
+ name: Pearson Max
100
+ - type: spearman_max
101
+ value: 0.7614153421868329
102
+ name: Spearman Max
103
+ - task:
104
+ type: semantic-similarity
105
+ name: Semantic Similarity
106
+ dataset:
107
+ name: sts test
108
+ type: sts-test
109
+ metrics:
110
+ - type: pearson_cosine
111
+ value: 0.69132863091579
112
+ name: Pearson Cosine
113
+ - type: spearman_cosine
114
+ value: 0.6775246001958918
115
+ name: Spearman Cosine
116
+ - type: pearson_manhattan
117
+ value: 0.6993315331718462
118
+ name: Pearson Manhattan
119
+ - type: spearman_manhattan
120
+ value: 0.6760860789893309
121
+ name: Spearman Manhattan
122
+ - type: pearson_euclidean
123
+ value: 0.7005700491110102
124
+ name: Pearson Euclidean
125
+ - type: spearman_euclidean
126
+ value: 0.6775246001958918
127
+ name: Spearman Euclidean
128
+ - type: pearson_dot
129
+ value: 0.6913286275793098
130
+ name: Pearson Dot
131
+ - type: spearman_dot
132
+ value: 0.6775246001958918
133
+ name: Spearman Dot
134
+ - type: pearson_max
135
+ value: 0.7005700491110102
136
+ name: Pearson Max
137
+ - type: spearman_max
138
+ value: 0.6775246001958918
139
+ name: Spearman Max
140
+ ---
141
+
142
+ # SentenceTransformer based on prajjwal1/bert-tiny
143
+
144
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
145
+
146
+ ## Model Details
147
+
148
+ ### Model Description
149
+ - **Model Type:** Sentence Transformer
150
+ - **Base model:** [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) <!-- at revision 6f75de8b60a9f8a2fdf7b69cbd86d9e64bcb3837 -->
151
+ - **Maximum Sequence Length:** 384 tokens
152
+ - **Output Dimensionality:** 256 tokens
153
+ - **Similarity Function:** Cosine Similarity
154
+ <!-- - **Training Dataset:** Unknown -->
155
+ <!-- - **Language:** Unknown -->
156
+ <!-- - **License:** Unknown -->
157
+
158
+ ### Model Sources
159
+
160
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
161
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
162
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
163
+
164
+ ### Full Model Architecture
165
+
166
+ ```
167
+ SentenceTransformer(
168
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
169
+ (1): Pooling({'word_embedding_dimension': 128, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
170
+ (2): Dense({'in_features': 128, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
171
+ (3): Normalize()
172
+ )
173
+ ```
174
+
175
+ ## Usage
176
+
177
+ ### Direct Usage (Sentence Transformers)
178
+
179
+ First install the Sentence Transformers library:
180
+
181
+ ```bash
182
+ pip install -U sentence-transformers
183
+ ```
184
+
185
+ Then you can load this model and run inference.
186
+ ```python
187
+ from sentence_transformers import SentenceTransformer
188
+
189
+ # Download from the 🤗 Hub
190
+ model = SentenceTransformer("sentence-transformers-testing/all-nli-bert-tiny-dense")
191
+ # Run inference
192
+ sentences = [
193
+ 'A waitress with a pink shirt and black pants walking through a restaurant carrying bowls of soup.',
194
+ 'A person with pants',
195
+ 'Nobody has pants',
196
+ ]
197
+ embeddings = model.encode(sentences)
198
+ print(embeddings.shape)
199
+ # [3, 256]
200
+
201
+ # Get the similarity scores for the embeddings
202
+ similarities = model.similarity(embeddings, embeddings)
203
+ print(similarities.shape)
204
+ # [3, 3]
205
+ ```
206
+
207
+ <!--
208
+ ### Direct Usage (Transformers)
209
+
210
+ <details><summary>Click to see the direct usage in Transformers</summary>
211
+
212
+ </details>
213
+ -->
214
+
215
+ <!--
216
+ ### Downstream Usage (Sentence Transformers)
217
+
218
+ You can finetune this model on your own dataset.
219
+
220
+ <details><summary>Click to expand</summary>
221
+
222
+ </details>
223
+ -->
224
+
225
+ <!--
226
+ ### Out-of-Scope Use
227
+
228
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
229
+ -->
230
+
231
+ ## Evaluation
232
+
233
+ ### Metrics
234
+
235
+ #### Semantic Similarity
236
+ * Dataset: `sts-dev`
237
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
238
+
239
+ | Metric | Value |
240
+ |:--------------------|:-----------|
241
+ | pearson_cosine | 0.7526 |
242
+ | **spearman_cosine** | **0.7614** |
243
+ | pearson_manhattan | 0.7622 |
244
+ | spearman_manhattan | 0.7597 |
245
+ | pearson_euclidean | 0.7632 |
246
+ | spearman_euclidean | 0.7614 |
247
+ | pearson_dot | 0.7526 |
248
+ | spearman_dot | 0.7614 |
249
+ | pearson_max | 0.7632 |
250
+ | spearman_max | 0.7614 |
251
+
252
+ #### Semantic Similarity
253
+ * Dataset: `sts-test`
254
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
255
+
256
+ | Metric | Value |
257
+ |:--------------------|:-----------|
258
+ | pearson_cosine | 0.6913 |
259
+ | **spearman_cosine** | **0.6775** |
260
+ | pearson_manhattan | 0.6993 |
261
+ | spearman_manhattan | 0.6761 |
262
+ | pearson_euclidean | 0.7006 |
263
+ | spearman_euclidean | 0.6775 |
264
+ | pearson_dot | 0.6913 |
265
+ | spearman_dot | 0.6775 |
266
+ | pearson_max | 0.7006 |
267
+ | spearman_max | 0.6775 |
268
+
269
+ <!--
270
+ ## Bias, Risks and Limitations
271
+
272
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
273
+ -->
274
+
275
+ <!--
276
+ ### Recommendations
277
+
278
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
279
+ -->
280
+
281
+ ## Training Details
282
+
283
+ ### Training Dataset
284
+
285
+ #### Unnamed Dataset
286
+
287
+
288
+ * Size: 277,277 training samples
289
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
290
+ * Approximate statistics based on the first 1000 samples:
291
+ | | anchor | positive | negative |
292
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
293
+ | type | string | string | string |
294
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.84 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.45 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.23 tokens</li><li>max: 28 tokens</li></ul> |
295
+ * Samples:
296
+ | anchor | positive | negative |
297
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
298
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
299
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
300
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
301
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
302
+ ```json
303
+ {
304
+ "scale": 20.0,
305
+ "similarity_fct": "cos_sim"
306
+ }
307
+ ```
308
+
309
+ ### Evaluation Dataset
310
+
311
+ #### Unnamed Dataset
312
+
313
+
314
+ * Size: 5,875 evaluation samples
315
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | anchor | positive | negative |
318
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
319
+ | type | string | string | string |
320
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.85 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.68 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.36 tokens</li><li>max: 26 tokens</li></ul> |
321
+ * Samples:
322
+ | anchor | positive | negative |
323
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
324
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
325
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
326
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
327
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
328
+ ```json
329
+ {
330
+ "scale": 20.0,
331
+ "similarity_fct": "cos_sim"
332
+ }
333
+ ```
334
+
335
+ ### Training Hyperparameters
336
+ #### Non-Default Hyperparameters
337
+
338
+ - `eval_strategy`: steps
339
+ - `per_device_train_batch_size`: 256
340
+ - `per_device_eval_batch_size`: 256
341
+ - `learning_rate`: 2e-05
342
+ - `num_train_epochs`: 1
343
+ - `warmup_ratio`: 0.1
344
+ - `bf16`: True
345
+
346
+ #### All Hyperparameters
347
+ <details><summary>Click to expand</summary>
348
+
349
+ - `overwrite_output_dir`: False
350
+ - `do_predict`: False
351
+ - `eval_strategy`: steps
352
+ - `prediction_loss_only`: True
353
+ - `per_device_train_batch_size`: 256
354
+ - `per_device_eval_batch_size`: 256
355
+ - `per_gpu_train_batch_size`: None
356
+ - `per_gpu_eval_batch_size`: None
357
+ - `gradient_accumulation_steps`: 1
358
+ - `eval_accumulation_steps`: None
359
+ - `torch_empty_cache_steps`: None
360
+ - `learning_rate`: 2e-05
361
+ - `weight_decay`: 0.0
362
+ - `adam_beta1`: 0.9
363
+ - `adam_beta2`: 0.999
364
+ - `adam_epsilon`: 1e-08
365
+ - `max_grad_norm`: 1.0
366
+ - `num_train_epochs`: 1
367
+ - `max_steps`: -1
368
+ - `lr_scheduler_type`: linear
369
+ - `lr_scheduler_kwargs`: {}
370
+ - `warmup_ratio`: 0.1
371
+ - `warmup_steps`: 0
372
+ - `log_level`: passive
373
+ - `log_level_replica`: warning
374
+ - `log_on_each_node`: True
375
+ - `logging_nan_inf_filter`: True
376
+ - `save_safetensors`: True
377
+ - `save_on_each_node`: False
378
+ - `save_only_model`: False
379
+ - `restore_callback_states_from_checkpoint`: False
380
+ - `no_cuda`: False
381
+ - `use_cpu`: False
382
+ - `use_mps_device`: False
383
+ - `seed`: 42
384
+ - `data_seed`: None
385
+ - `jit_mode_eval`: False
386
+ - `use_ipex`: False
387
+ - `bf16`: True
388
+ - `fp16`: False
389
+ - `fp16_opt_level`: O1
390
+ - `half_precision_backend`: auto
391
+ - `bf16_full_eval`: False
392
+ - `fp16_full_eval`: False
393
+ - `tf32`: None
394
+ - `local_rank`: 0
395
+ - `ddp_backend`: None
396
+ - `tpu_num_cores`: None
397
+ - `tpu_metrics_debug`: False
398
+ - `debug`: []
399
+ - `dataloader_drop_last`: False
400
+ - `dataloader_num_workers`: 0
401
+ - `dataloader_prefetch_factor`: None
402
+ - `past_index`: -1
403
+ - `disable_tqdm`: False
404
+ - `remove_unused_columns`: True
405
+ - `label_names`: None
406
+ - `load_best_model_at_end`: False
407
+ - `ignore_data_skip`: False
408
+ - `fsdp`: []
409
+ - `fsdp_min_num_params`: 0
410
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
411
+ - `fsdp_transformer_layer_cls_to_wrap`: None
412
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
413
+ - `deepspeed`: None
414
+ - `label_smoothing_factor`: 0.0
415
+ - `optim`: adamw_torch
416
+ - `optim_args`: None
417
+ - `adafactor`: False
418
+ - `group_by_length`: False
419
+ - `length_column_name`: length
420
+ - `ddp_find_unused_parameters`: None
421
+ - `ddp_bucket_cap_mb`: None
422
+ - `ddp_broadcast_buffers`: False
423
+ - `dataloader_pin_memory`: True
424
+ - `dataloader_persistent_workers`: False
425
+ - `skip_memory_metrics`: True
426
+ - `use_legacy_prediction_loop`: False
427
+ - `push_to_hub`: False
428
+ - `resume_from_checkpoint`: None
429
+ - `hub_model_id`: None
430
+ - `hub_strategy`: every_save
431
+ - `hub_private_repo`: False
432
+ - `hub_always_push`: False
433
+ - `gradient_checkpointing`: False
434
+ - `gradient_checkpointing_kwargs`: None
435
+ - `include_inputs_for_metrics`: False
436
+ - `eval_do_concat_batches`: True
437
+ - `fp16_backend`: auto
438
+ - `push_to_hub_model_id`: None
439
+ - `push_to_hub_organization`: None
440
+ - `mp_parameters`:
441
+ - `auto_find_batch_size`: False
442
+ - `full_determinism`: False
443
+ - `torchdynamo`: None
444
+ - `ray_scope`: last
445
+ - `ddp_timeout`: 1800
446
+ - `torch_compile`: False
447
+ - `torch_compile_backend`: None
448
+ - `torch_compile_mode`: None
449
+ - `dispatch_batches`: None
450
+ - `split_batches`: None
451
+ - `include_tokens_per_second`: False
452
+ - `include_num_input_tokens_seen`: False
453
+ - `neftune_noise_alpha`: None
454
+ - `optim_target_modules`: None
455
+ - `batch_eval_metrics`: False
456
+ - `eval_on_start`: False
457
+ - `eval_use_gather_object`: False
458
+ - `batch_sampler`: batch_sampler
459
+ - `multi_dataset_batch_sampler`: proportional
460
+
461
+ </details>
462
+
463
+ ### Training Logs
464
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
465
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
466
+ | 0.0923 | 100 | 3.4021 | 2.1678 | 0.7247 | - |
467
+ | 0.1845 | 200 | 2.3398 | 1.7482 | 0.7480 | - |
468
+ | 0.2768 | 300 | 2.0893 | 1.6365 | 0.7537 | - |
469
+ | 0.3690 | 400 | 2.0035 | 1.5782 | 0.7552 | - |
470
+ | 0.4613 | 500 | 1.9023 | 1.5376 | 0.7587 | - |
471
+ | 0.5535 | 600 | 1.8647 | 1.5059 | 0.7597 | - |
472
+ | 0.6458 | 700 | 1.8511 | 1.4836 | 0.7605 | - |
473
+ | 0.7380 | 800 | 1.8094 | 1.4698 | 0.7613 | - |
474
+ | 0.8303 | 900 | 1.8338 | 1.4593 | 0.7609 | - |
475
+ | 0.9225 | 1000 | 1.7951 | 1.4553 | 0.7614 | - |
476
+ | 1.0 | 1084 | - | - | - | 0.6775 |
477
+
478
+
479
+ ### Environmental Impact
480
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
481
+ - **Energy Consumed**: 0.005 kWh
482
+ - **Carbon Emitted**: 0.002 kg of CO2
483
+ - **Hours Used**: 0.029 hours
484
+
485
+ ### Training Hardware
486
+ - **On Cloud**: No
487
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
488
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
489
+ - **RAM Size**: 31.78 GB
490
+
491
+ ### Framework Versions
492
+ - Python: 3.11.6
493
+ - Sentence Transformers: 3.1.0.dev0
494
+ - Transformers: 4.43.4
495
+ - PyTorch: 2.5.0.dev20240807+cu121
496
+ - Accelerate: 0.31.0
497
+ - Datasets: 2.20.0
498
+ - Tokenizers: 0.19.1
499
+
500
+ ## Citation
501
+
502
+ ### BibTeX
503
+
504
+ #### Sentence Transformers
505
+ ```bibtex
506
+ @inproceedings{reimers-2019-sentence-bert,
507
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
508
+ author = "Reimers, Nils and Gurevych, Iryna",
509
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
510
+ month = "11",
511
+ year = "2019",
512
+ publisher = "Association for Computational Linguistics",
513
+ url = "https://arxiv.org/abs/1908.10084",
514
+ }
515
+ ```
516
+
517
+ #### MultipleNegativesRankingLoss
518
+ ```bibtex
519
+ @misc{henderson2017efficient,
520
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
521
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
522
+ year={2017},
523
+ eprint={1705.00652},
524
+ archivePrefix={arXiv},
525
+ primaryClass={cs.CL}
526
+ }
527
+ ```
528
+
529
+ <!--
530
+ ## Glossary
531
+
532
+ *Clearly define terms in order to be accessible across audiences.*
533
+ -->
534
+
535
+ <!--
536
+ ## Model Card Authors
537
+
538
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
539
+ -->
540
+
541
+ <!--
542
+ ## Model Card Contact
543
+
544
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
545
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "prajjwal1/bert-tiny",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 128,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 512,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 2,
17
+ "num_hidden_layers": 2,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.43.4",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0.dev0",
4
+ "transformers": "4.43.4",
5
+ "pytorch": "2.5.0.dev20240807+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f647ae493cd1e8935379eb3dc80ca965d6f0d34b8442b4d24fbc6577307507
3
+ size 17547912
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 384,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff