|
--- |
|
tags: |
|
- mteb |
|
model-index: |
|
- name: piccolo-base-zh |
|
results: |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 49.16558217326158 |
|
- type: cos_sim_spearman |
|
value: 51.4049475858823 |
|
- type: euclidean_pearson |
|
value: 49.85853741070363 |
|
- type: euclidean_spearman |
|
value: 51.501428092542234 |
|
- type: manhattan_pearson |
|
value: 49.746099634926296 |
|
- type: manhattan_spearman |
|
value: 51.41081804320127 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.385361699031854 |
|
- type: cos_sim_spearman |
|
value: 52.59114913702212 |
|
- type: euclidean_pearson |
|
value: 54.994530439418355 |
|
- type: euclidean_spearman |
|
value: 52.54102886188004 |
|
- type: manhattan_pearson |
|
value: 54.9503071669608 |
|
- type: manhattan_spearman |
|
value: 52.51465652540901 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 40.236 |
|
- type: f1 |
|
value: 39.43040092463147 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 60.98952187211432 |
|
- type: cos_sim_spearman |
|
value: 62.68189713123115 |
|
- type: euclidean_pearson |
|
value: 61.089426749761344 |
|
- type: euclidean_spearman |
|
value: 62.41743375544581 |
|
- type: manhattan_pearson |
|
value: 61.14747216341409 |
|
- type: manhattan_spearman |
|
value: 62.488918956547046 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 38.36392300667918 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 35.645927581489175 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 85.25085782849087 |
|
- type: mrr |
|
value: 87.77154761904762 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 86.15357754080844 |
|
- type: mrr |
|
value: 88.53547619047617 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.683 |
|
- type: map_at_10 |
|
value: 35.522999999999996 |
|
- type: map_at_100 |
|
value: 37.456 |
|
- type: map_at_1000 |
|
value: 37.576 |
|
- type: map_at_3 |
|
value: 31.584 |
|
- type: map_at_5 |
|
value: 33.684999999999995 |
|
- type: mrr_at_1 |
|
value: 36.459 |
|
- type: mrr_at_10 |
|
value: 44.534 |
|
- type: mrr_at_100 |
|
value: 45.6 |
|
- type: mrr_at_1000 |
|
value: 45.647 |
|
- type: mrr_at_3 |
|
value: 42.186 |
|
- type: mrr_at_5 |
|
value: 43.482 |
|
- type: ndcg_at_1 |
|
value: 36.459 |
|
- type: ndcg_at_10 |
|
value: 42.025 |
|
- type: ndcg_at_100 |
|
value: 49.754 |
|
- type: ndcg_at_1000 |
|
value: 51.815999999999995 |
|
- type: ndcg_at_3 |
|
value: 37.056 |
|
- type: ndcg_at_5 |
|
value: 38.962 |
|
- type: precision_at_1 |
|
value: 36.459 |
|
- type: precision_at_10 |
|
value: 9.485000000000001 |
|
- type: precision_at_100 |
|
value: 1.567 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 21.13 |
|
- type: precision_at_5 |
|
value: 15.209 |
|
- type: recall_at_1 |
|
value: 23.683 |
|
- type: recall_at_10 |
|
value: 52.190999999999995 |
|
- type: recall_at_100 |
|
value: 84.491 |
|
- type: recall_at_1000 |
|
value: 98.19600000000001 |
|
- type: recall_at_3 |
|
value: 37.09 |
|
- type: recall_at_5 |
|
value: 43.262 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 74.20324714371618 |
|
- type: cos_sim_ap |
|
value: 82.32631646194994 |
|
- type: cos_sim_f1 |
|
value: 76.64052827073876 |
|
- type: cos_sim_precision |
|
value: 68.58725761772854 |
|
- type: cos_sim_recall |
|
value: 86.83656768763151 |
|
- type: dot_accuracy |
|
value: 70.33072760072159 |
|
- type: dot_ap |
|
value: 77.46972172609794 |
|
- type: dot_f1 |
|
value: 73.6668924804026 |
|
- type: dot_precision |
|
value: 62.84676354029062 |
|
- type: dot_recall |
|
value: 88.98760813654431 |
|
- type: euclidean_accuracy |
|
value: 74.78051713770296 |
|
- type: euclidean_ap |
|
value: 82.65778389584023 |
|
- type: euclidean_f1 |
|
value: 77.1843623157445 |
|
- type: euclidean_precision |
|
value: 71.05211406096362 |
|
- type: euclidean_recall |
|
value: 84.47509936871639 |
|
- type: manhattan_accuracy |
|
value: 74.76849067949489 |
|
- type: manhattan_ap |
|
value: 82.55694030572194 |
|
- type: manhattan_f1 |
|
value: 77.1776459569154 |
|
- type: manhattan_precision |
|
value: 69.5423855963991 |
|
- type: manhattan_recall |
|
value: 86.69628244096329 |
|
- type: max_accuracy |
|
value: 74.78051713770296 |
|
- type: max_ap |
|
value: 82.65778389584023 |
|
- type: max_f1 |
|
value: 77.1843623157445 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.99799999999999 |
|
- type: map_at_10 |
|
value: 81.271 |
|
- type: map_at_100 |
|
value: 81.53399999999999 |
|
- type: map_at_1000 |
|
value: 81.535 |
|
- type: map_at_3 |
|
value: 80.049 |
|
- type: map_at_5 |
|
value: 80.793 |
|
- type: mrr_at_1 |
|
value: 73.13 |
|
- type: mrr_at_10 |
|
value: 81.193 |
|
- type: mrr_at_100 |
|
value: 81.463 |
|
- type: mrr_at_1000 |
|
value: 81.464 |
|
- type: mrr_at_3 |
|
value: 80.067 |
|
- type: mrr_at_5 |
|
value: 80.741 |
|
- type: ndcg_at_1 |
|
value: 73.34 |
|
- type: ndcg_at_10 |
|
value: 84.503 |
|
- type: ndcg_at_100 |
|
value: 85.643 |
|
- type: ndcg_at_1000 |
|
value: 85.693 |
|
- type: ndcg_at_3 |
|
value: 82.135 |
|
- type: ndcg_at_5 |
|
value: 83.401 |
|
- type: precision_at_1 |
|
value: 73.34 |
|
- type: precision_at_10 |
|
value: 9.536 |
|
- type: precision_at_100 |
|
value: 1.004 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 29.54 |
|
- type: precision_at_5 |
|
value: 18.398 |
|
- type: recall_at_1 |
|
value: 72.99799999999999 |
|
- type: recall_at_10 |
|
value: 94.31 |
|
- type: recall_at_100 |
|
value: 99.368 |
|
- type: recall_at_1000 |
|
value: 99.789 |
|
- type: recall_at_3 |
|
value: 87.935 |
|
- type: recall_at_5 |
|
value: 90.991 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.537 |
|
- type: map_at_10 |
|
value: 81.292 |
|
- type: map_at_100 |
|
value: 84.031 |
|
- type: map_at_1000 |
|
value: 84.066 |
|
- type: map_at_3 |
|
value: 56.571000000000005 |
|
- type: map_at_5 |
|
value: 71.082 |
|
- type: mrr_at_1 |
|
value: 91.2 |
|
- type: mrr_at_10 |
|
value: 93.893 |
|
- type: mrr_at_100 |
|
value: 93.955 |
|
- type: mrr_at_1000 |
|
value: 93.95700000000001 |
|
- type: mrr_at_3 |
|
value: 93.61699999999999 |
|
- type: mrr_at_5 |
|
value: 93.767 |
|
- type: ndcg_at_1 |
|
value: 91.2 |
|
- type: ndcg_at_10 |
|
value: 88.255 |
|
- type: ndcg_at_100 |
|
value: 90.813 |
|
- type: ndcg_at_1000 |
|
value: 91.144 |
|
- type: ndcg_at_3 |
|
value: 87.435 |
|
- type: ndcg_at_5 |
|
value: 85.961 |
|
- type: precision_at_1 |
|
value: 91.2 |
|
- type: precision_at_10 |
|
value: 42.14 |
|
- type: precision_at_100 |
|
value: 4.817 |
|
- type: precision_at_1000 |
|
value: 0.48900000000000005 |
|
- type: precision_at_3 |
|
value: 78.467 |
|
- type: precision_at_5 |
|
value: 65.75999999999999 |
|
- type: recall_at_1 |
|
value: 26.537 |
|
- type: recall_at_10 |
|
value: 89.262 |
|
- type: recall_at_100 |
|
value: 97.783 |
|
- type: recall_at_1000 |
|
value: 99.49799999999999 |
|
- type: recall_at_3 |
|
value: 58.573 |
|
- type: recall_at_5 |
|
value: 75.154 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 48.5 |
|
- type: map_at_10 |
|
value: 57.898 |
|
- type: map_at_100 |
|
value: 58.599000000000004 |
|
- type: map_at_1000 |
|
value: 58.616 |
|
- type: map_at_3 |
|
value: 55.1 |
|
- type: map_at_5 |
|
value: 56.80500000000001 |
|
- type: mrr_at_1 |
|
value: 48.5 |
|
- type: mrr_at_10 |
|
value: 57.898 |
|
- type: mrr_at_100 |
|
value: 58.599000000000004 |
|
- type: mrr_at_1000 |
|
value: 58.616 |
|
- type: mrr_at_3 |
|
value: 55.1 |
|
- type: mrr_at_5 |
|
value: 56.80500000000001 |
|
- type: ndcg_at_1 |
|
value: 48.5 |
|
- type: ndcg_at_10 |
|
value: 62.876 |
|
- type: ndcg_at_100 |
|
value: 66.00200000000001 |
|
- type: ndcg_at_1000 |
|
value: 66.467 |
|
- type: ndcg_at_3 |
|
value: 57.162 |
|
- type: ndcg_at_5 |
|
value: 60.263999999999996 |
|
- type: precision_at_1 |
|
value: 48.5 |
|
- type: precision_at_10 |
|
value: 7.870000000000001 |
|
- type: precision_at_100 |
|
value: 0.927 |
|
- type: precision_at_1000 |
|
value: 0.096 |
|
- type: precision_at_3 |
|
value: 21.032999999999998 |
|
- type: precision_at_5 |
|
value: 14.14 |
|
- type: recall_at_1 |
|
value: 48.5 |
|
- type: recall_at_10 |
|
value: 78.7 |
|
- type: recall_at_100 |
|
value: 92.7 |
|
- type: recall_at_1000 |
|
value: 96.39999999999999 |
|
- type: recall_at_3 |
|
value: 63.1 |
|
- type: recall_at_5 |
|
value: 70.7 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 44.34782608695652 |
|
- type: f1 |
|
value: 36.401426200836205 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 84.25891181988743 |
|
- type: ap |
|
value: 50.54636280166089 |
|
- type: f1 |
|
value: 78.55080202541332 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.02878561337955 |
|
- type: cos_sim_spearman |
|
value: 75.39509553139982 |
|
- type: euclidean_pearson |
|
value: 73.92598696939956 |
|
- type: euclidean_spearman |
|
value: 75.5471147196853 |
|
- type: manhattan_pearson |
|
value: 73.88049486090739 |
|
- type: manhattan_spearman |
|
value: 75.51361990583285 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 64.739 |
|
- type: map_at_10 |
|
value: 74.039 |
|
- type: map_at_100 |
|
value: 74.38 |
|
- type: map_at_1000 |
|
value: 74.39099999999999 |
|
- type: map_at_3 |
|
value: 72.074 |
|
- type: map_at_5 |
|
value: 73.29299999999999 |
|
- type: mrr_at_1 |
|
value: 66.92 |
|
- type: mrr_at_10 |
|
value: 74.636 |
|
- type: mrr_at_100 |
|
value: 74.94 |
|
- type: mrr_at_1000 |
|
value: 74.95 |
|
- type: mrr_at_3 |
|
value: 72.911 |
|
- type: mrr_at_5 |
|
value: 73.981 |
|
- type: ndcg_at_1 |
|
value: 66.92 |
|
- type: ndcg_at_10 |
|
value: 77.924 |
|
- type: ndcg_at_100 |
|
value: 79.471 |
|
- type: ndcg_at_1000 |
|
value: 79.73400000000001 |
|
- type: ndcg_at_3 |
|
value: 74.17200000000001 |
|
- type: ndcg_at_5 |
|
value: 76.236 |
|
- type: precision_at_1 |
|
value: 66.92 |
|
- type: precision_at_10 |
|
value: 9.5 |
|
- type: precision_at_100 |
|
value: 1.027 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 27.989000000000004 |
|
- type: precision_at_5 |
|
value: 17.874000000000002 |
|
- type: recall_at_1 |
|
value: 64.739 |
|
- type: recall_at_10 |
|
value: 89.324 |
|
- type: recall_at_100 |
|
value: 96.342 |
|
- type: recall_at_1000 |
|
value: 98.38900000000001 |
|
- type: recall_at_3 |
|
value: 79.378 |
|
- type: recall_at_5 |
|
value: 84.28099999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 68.97108271687962 |
|
- type: f1 |
|
value: 66.8625981386677 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 73.32212508406187 |
|
- type: f1 |
|
value: 73.33875034670166 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 49.0 |
|
- type: map_at_10 |
|
value: 55.022999999999996 |
|
- type: map_at_100 |
|
value: 55.550999999999995 |
|
- type: map_at_1000 |
|
value: 55.608000000000004 |
|
- type: map_at_3 |
|
value: 53.417 |
|
- type: map_at_5 |
|
value: 54.372 |
|
- type: mrr_at_1 |
|
value: 49.3 |
|
- type: mrr_at_10 |
|
value: 55.176 |
|
- type: mrr_at_100 |
|
value: 55.703 |
|
- type: mrr_at_1000 |
|
value: 55.76 |
|
- type: mrr_at_3 |
|
value: 53.567 |
|
- type: mrr_at_5 |
|
value: 54.522000000000006 |
|
- type: ndcg_at_1 |
|
value: 49.0 |
|
- type: ndcg_at_10 |
|
value: 58.089999999999996 |
|
- type: ndcg_at_100 |
|
value: 60.988 |
|
- type: ndcg_at_1000 |
|
value: 62.580999999999996 |
|
- type: ndcg_at_3 |
|
value: 54.803000000000004 |
|
- type: ndcg_at_5 |
|
value: 56.508 |
|
- type: precision_at_1 |
|
value: 49.0 |
|
- type: precision_at_10 |
|
value: 6.78 |
|
- type: precision_at_100 |
|
value: 0.8210000000000001 |
|
- type: precision_at_1000 |
|
value: 0.095 |
|
- type: precision_at_3 |
|
value: 19.6 |
|
- type: precision_at_5 |
|
value: 12.58 |
|
- type: recall_at_1 |
|
value: 49.0 |
|
- type: recall_at_10 |
|
value: 67.80000000000001 |
|
- type: recall_at_100 |
|
value: 82.1 |
|
- type: recall_at_1000 |
|
value: 94.8 |
|
- type: recall_at_3 |
|
value: 58.8 |
|
- type: recall_at_5 |
|
value: 62.9 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 28.87237408060796 |
|
- type: mrr |
|
value: 27.83015873015873 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 70.25 |
|
- type: f1 |
|
value: 70.29055400149645 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 65.56578234975636 |
|
- type: cos_sim_ap |
|
value: 70.89354058570412 |
|
- type: cos_sim_f1 |
|
value: 71.21024370095002 |
|
- type: cos_sim_precision |
|
value: 58.48032564450475 |
|
- type: cos_sim_recall |
|
value: 91.02428722280888 |
|
- type: dot_accuracy |
|
value: 64.86193827828912 |
|
- type: dot_ap |
|
value: 70.17697803463875 |
|
- type: dot_f1 |
|
value: 70.68676716917922 |
|
- type: dot_precision |
|
value: 58.57043719639139 |
|
- type: dot_recall |
|
value: 89.1235480464625 |
|
- type: euclidean_accuracy |
|
value: 64.86193827828912 |
|
- type: euclidean_ap |
|
value: 70.26847152773904 |
|
- type: euclidean_f1 |
|
value: 70.9984152139461 |
|
- type: euclidean_precision |
|
value: 56.81674064679771 |
|
- type: euclidean_recall |
|
value: 94.61457233368532 |
|
- type: manhattan_accuracy |
|
value: 65.40335679480238 |
|
- type: manhattan_ap |
|
value: 70.22941558736018 |
|
- type: manhattan_f1 |
|
value: 71.09712937475423 |
|
- type: manhattan_precision |
|
value: 56.64160401002506 |
|
- type: manhattan_recall |
|
value: 95.45934530095037 |
|
- type: max_accuracy |
|
value: 65.56578234975636 |
|
- type: max_ap |
|
value: 70.89354058570412 |
|
- type: max_f1 |
|
value: 71.21024370095002 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 89.92999999999999 |
|
- type: ap |
|
value: 87.16059195012956 |
|
- type: f1 |
|
value: 89.90917477839415 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.74161502387672 |
|
- type: cos_sim_spearman |
|
value: 31.58353529723325 |
|
- type: euclidean_pearson |
|
value: 32.43729673844635 |
|
- type: euclidean_spearman |
|
value: 31.59527486602242 |
|
- type: manhattan_pearson |
|
value: 32.37467059678786 |
|
- type: manhattan_spearman |
|
value: 31.44408004951894 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.233749845501194 |
|
- type: cos_sim_spearman |
|
value: 36.47808586229587 |
|
- type: euclidean_pearson |
|
value: 32.663447466546806 |
|
- type: euclidean_spearman |
|
value: 34.45830454037139 |
|
- type: manhattan_pearson |
|
value: 32.80239212096335 |
|
- type: manhattan_spearman |
|
value: 34.581060433895125 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 63.05131937664673 |
|
- type: cos_sim_spearman |
|
value: 66.51353746725948 |
|
- type: euclidean_pearson |
|
value: 61.24016998745561 |
|
- type: euclidean_spearman |
|
value: 66.07115266049276 |
|
- type: manhattan_pearson |
|
value: 64.55660243659054 |
|
- type: manhattan_spearman |
|
value: 66.80282149562386 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.45533692882996 |
|
- type: cos_sim_spearman |
|
value: 70.6045637565602 |
|
- type: euclidean_pearson |
|
value: 72.75588977483554 |
|
- type: euclidean_spearman |
|
value: 73.36630581886473 |
|
- type: manhattan_pearson |
|
value: 72.72517409326954 |
|
- type: manhattan_spearman |
|
value: 73.35358940437355 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 66.45779474032288 |
|
- type: mrr |
|
value: 76.0782192023729 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.458 |
|
- type: map_at_10 |
|
value: 74.355 |
|
- type: map_at_100 |
|
value: 78.158 |
|
- type: map_at_1000 |
|
value: 78.233 |
|
- type: map_at_3 |
|
value: 52.2 |
|
- type: map_at_5 |
|
value: 64.14 |
|
- type: mrr_at_1 |
|
value: 88.37 |
|
- type: mrr_at_10 |
|
value: 91.117 |
|
- type: mrr_at_100 |
|
value: 91.231 |
|
- type: mrr_at_1000 |
|
value: 91.23599999999999 |
|
- type: mrr_at_3 |
|
value: 90.645 |
|
- type: mrr_at_5 |
|
value: 90.948 |
|
- type: ndcg_at_1 |
|
value: 88.37 |
|
- type: ndcg_at_10 |
|
value: 82.384 |
|
- type: ndcg_at_100 |
|
value: 86.431 |
|
- type: ndcg_at_1000 |
|
value: 87.163 |
|
- type: ndcg_at_3 |
|
value: 83.993 |
|
- type: ndcg_at_5 |
|
value: 82.411 |
|
- type: precision_at_1 |
|
value: 88.37 |
|
- type: precision_at_10 |
|
value: 41.131 |
|
- type: precision_at_100 |
|
value: 4.9799999999999995 |
|
- type: precision_at_1000 |
|
value: 0.515 |
|
- type: precision_at_3 |
|
value: 73.651 |
|
- type: precision_at_5 |
|
value: 61.634 |
|
- type: recall_at_1 |
|
value: 26.458 |
|
- type: recall_at_10 |
|
value: 81.3 |
|
- type: recall_at_100 |
|
value: 94.342 |
|
- type: recall_at_1000 |
|
value: 98.103 |
|
- type: recall_at_3 |
|
value: 54.020999999999994 |
|
- type: recall_at_5 |
|
value: 67.781 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 46.814 |
|
- type: f1 |
|
value: 45.580027683507666 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 61.43613064816144 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 53.01838461793776 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 59.3 |
|
- type: map_at_10 |
|
value: 69.158 |
|
- type: map_at_100 |
|
value: 69.60300000000001 |
|
- type: map_at_1000 |
|
value: 69.611 |
|
- type: map_at_3 |
|
value: 67.467 |
|
- type: map_at_5 |
|
value: 68.432 |
|
- type: mrr_at_1 |
|
value: 59.199999999999996 |
|
- type: mrr_at_10 |
|
value: 69.108 |
|
- type: mrr_at_100 |
|
value: 69.553 |
|
- type: mrr_at_1000 |
|
value: 69.56099999999999 |
|
- type: mrr_at_3 |
|
value: 67.417 |
|
- type: mrr_at_5 |
|
value: 68.382 |
|
- type: ndcg_at_1 |
|
value: 59.3 |
|
- type: ndcg_at_10 |
|
value: 73.54 |
|
- type: ndcg_at_100 |
|
value: 75.652 |
|
- type: ndcg_at_1000 |
|
value: 75.868 |
|
- type: ndcg_at_3 |
|
value: 70.074 |
|
- type: ndcg_at_5 |
|
value: 71.808 |
|
- type: precision_at_1 |
|
value: 59.3 |
|
- type: precision_at_10 |
|
value: 8.709999999999999 |
|
- type: precision_at_100 |
|
value: 0.9690000000000001 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 25.867 |
|
- type: precision_at_5 |
|
value: 16.36 |
|
- type: recall_at_1 |
|
value: 59.3 |
|
- type: recall_at_10 |
|
value: 87.1 |
|
- type: recall_at_100 |
|
value: 96.89999999999999 |
|
- type: recall_at_1000 |
|
value: 98.6 |
|
- type: recall_at_3 |
|
value: 77.60000000000001 |
|
- type: recall_at_5 |
|
value: 81.8 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 84.69999999999999 |
|
- type: ap |
|
value: 66.65020528563207 |
|
- type: f1 |
|
value: 83.00542769081453 |
|
--- |
|
|
|
## piccolo-base-zh |
|
|
|
piccolo是一个通用embedding模型(中文), 由来自商汤科技的通用模型组完成训练。piccolo借鉴了E5以及GTE的训练流程,采用了两阶段的训练方式。 |
|
在第一阶段中,我们搜集和爬取了4亿的中文文本对(可视为弱监督文本对数据),并采用二元组的softmax对比学习损失来优化模型。 |
|
在第二阶段中,我们搜集整理了2000万人工标注的中文文本对(精标数据),并采用带有难负样本的三元组的softmax对比学习损失来帮助模型更好地优化。 |
|
目前,我们提供了piccolo-base-zh和piccolo-large-zh两个模型。 |
|
|
|
piccolo is a general text embedding model(chinese), powered by General Model Group from SenseTime Research. |
|
Inspired from E5 and GTE, piccolo is trained using a two stage pipeline. On the first stage, we collect and crawl 400 million weakly supervised Chinese text pairs from the Internet, |
|
and train the model with the pair(text and text pos) softmax contrastive loss. |
|
On the second stage, we collect 20 million human labeled chinese text pairs dataset, and finetune the model with tiplet (text, text_pos, text_neg) contrastive loss. |
|
Currently here we offer two different sizes of models, including piccolo-base-zh, piccolo-large-zh. |
|
|
|
## Metric |
|
我们将piccolo与其他的开源embedding模型在CMTEB榜单上进行了比较,请参考CMTEB榜单。我们在eval文件夹中提供了复现结果的脚本。 |
|
|
|
We compared the performance of the piccolo with other embedding models on the C-MTEB benchmark. please refer to the C-MTEB leaderboard. |
|
we provide scripts in "eval" folder for results reproducing. |
|
|
|
|
|
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) | |
|
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |
|
| [**piccolo-large-zh**] | 0.65 | 1024 | 512 | **64.11** | 67.03 | 47.04 | 78.38 | 65.98 | 70.93 | 58.02 | |
|
| [bge-large-zh]| 1.3 | 1024| 512 | 63.96 | 68.32 | 48.39 | 78.94 | 65.11 | 71.52 | 54.98 | |
|
| [**piccolo-base-zh**]| 0.2 | 768 | 512 | **63.66** | 66.98 | 47.12 | 76.61 | 66.68 | 71.2 | 55.9 | |
|
| [bge-large-zh-no-instruct]| 1.3 | 1024 | 512 | 63.4 | 68.58 | 50.01 | 76.77 | 64.9 | 70.54 | 53 | |
|
| [bge-base-zh]| 0.41 | 768 | 512 | 62.8 | 67.07 | 47.64 | 77.5 | 64.91 | 69.53 | 54.12 | |
|
|
|
## Usage |
|
在sentence-transformer package中可以很容易地调用piccolo模型 |
|
```python |
|
# for s2s dataset, you can use piccolo as below |
|
# 对于短对短数据集,下面是通用的使用方式 |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["数据1", "数据2"] |
|
model = SentenceTransformer('sensenova/piccolo-base-zh') |
|
embeddings_1 = model.encode(sentences, normalize_embeddings=True) |
|
embeddings_2 = model.encode(sentences, normalize_embeddings=True) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
print(similarity) |
|
|
|
# for s2p dataset, we recommend to add instruction for passage retrieval |
|
# 对于短对长数据集,我们推荐添加instruction,来帮助模型更好地进行检索。 |
|
from sentence_transformers import SentenceTransformer |
|
queries = ['query_1', 'query_2'] |
|
passages = ["doc_1", "doc_2"] |
|
|
|
model = SentenceTransformer('sensenova/piccolo-base-zh') |
|
q_embeddings = model.encode(["查询:" + q for q in queries], normalize_embeddings=True) |
|
p_embeddings = model.encode(["结果:" + p for p in passages], normalize_embeddings=True) |
|
scores = q_embeddings @ p_embeddings.T |
|
``` |
|
|
|
## Training Detail |
|
TODO |
|
|
|
## acknowledgement |
|
|
|
piccolo is powered by Genral Model group from SenseTime Research. |
|
[Jinkin](https://huggingface.co/Jinkin) complete code implementation and model training. |
|
[Jinkin](https://huggingface.co/Jinkin), [CCCCxxx](https://huggingface.co/CCCCxxx) completed the data collection、processing and model evaluation together. |
|
Project is led by [Gaomengya](https://huggingface.co/gaomengya) and [chaorenwu111](https://huggingface.co/chaorenwu111) |