Update README.md
Browse files
README.md
CHANGED
@@ -48,7 +48,11 @@ The training data was created via the following steps:
|
|
48 |
The complete code for fine-tuning, testing, and creating similarity maps can be found in the [turkish-colpali GitHub repository](https://github.com/selimcavas/turkish-colpali). All notebooks in the repository are in Turkish to better serve the Turkish NLP community.
|
49 |
|
50 |
```python
|
|
|
|
|
|
|
51 |
import torch
|
|
|
52 |
from PIL import Image
|
53 |
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
54 |
|
@@ -61,6 +65,13 @@ model = ColPaliForRetrieval.from_pretrained(
|
|
61 |
|
62 |
processor = ColPaliProcessor.from_pretrained(model_name)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# Your inputs
|
65 |
images: List[Image.Image] = [
|
66 |
load_image_from_url(
|
@@ -77,24 +88,23 @@ images: List[Image.Image] = [
|
|
77 |
),
|
78 |
]
|
79 |
|
80 |
-
queries = [
|
81 |
"ekonomiyi düzeltme çabaları demir yolları gelir gider grafik",
|
82 |
"bitkilerin yapısı bitkisel dokular meristem doku",
|
83 |
"besin grupları tablosu karbonhidratlar",
|
84 |
"Türk milli mücadelesi emperyalizm Atatürk görseli"
|
85 |
]
|
86 |
|
87 |
-
#
|
88 |
batch_images = processor(images=images).to(model.device)
|
89 |
batch_queries = processor(text=queries).to(model.device)
|
90 |
|
91 |
# Forward pass
|
92 |
with torch.no_grad():
|
93 |
-
image_embeddings = model(**batch_images)
|
94 |
-
query_embeddings = model(**batch_queries)
|
95 |
|
96 |
-
|
97 |
-
scores = processor.score_retrieval(query_embeddings, image_embeddings)
|
98 |
|
99 |
scores
|
100 |
|
|
|
48 |
The complete code for fine-tuning, testing, and creating similarity maps can be found in the [turkish-colpali GitHub repository](https://github.com/selimcavas/turkish-colpali). All notebooks in the repository are in Turkish to better serve the Turkish NLP community.
|
49 |
|
50 |
```python
|
51 |
+
from io import BytesIO
|
52 |
+
from typing import List
|
53 |
+
import requests
|
54 |
import torch
|
55 |
+
from IPython.display import display
|
56 |
from PIL import Image
|
57 |
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
58 |
|
|
|
65 |
|
66 |
processor = ColPaliProcessor.from_pretrained(model_name)
|
67 |
|
68 |
+
def load_image_from_url(url: str) -> Image.Image:
|
69 |
+
"""
|
70 |
+
Load a PIL image from a valid URL.
|
71 |
+
"""
|
72 |
+
response = requests.get(url)
|
73 |
+
return Image.open(BytesIO(response.content))
|
74 |
+
|
75 |
# Your inputs
|
76 |
images: List[Image.Image] = [
|
77 |
load_image_from_url(
|
|
|
88 |
),
|
89 |
]
|
90 |
|
91 |
+
queries: List[str] = [
|
92 |
"ekonomiyi düzeltme çabaları demir yolları gelir gider grafik",
|
93 |
"bitkilerin yapısı bitkisel dokular meristem doku",
|
94 |
"besin grupları tablosu karbonhidratlar",
|
95 |
"Türk milli mücadelesi emperyalizm Atatürk görseli"
|
96 |
]
|
97 |
|
98 |
+
# Preprocess inputs
|
99 |
batch_images = processor(images=images).to(model.device)
|
100 |
batch_queries = processor(text=queries).to(model.device)
|
101 |
|
102 |
# Forward pass
|
103 |
with torch.no_grad():
|
104 |
+
image_embeddings = model(**batch_images).embeddings
|
105 |
+
query_embeddings = model(**batch_queries).embeddings
|
106 |
|
107 |
+
scores = processor.score_retrieval(query_embeddings, image_embeddings) # (n_queries, n_images)
|
|
|
108 |
|
109 |
scores
|
110 |
|