PEFT
TensorBoard
Safetensors
ColPali
Turkish
turkish
TR
selimc commited on
Commit
55f9142
·
verified ·
1 Parent(s): 909ce9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -23,7 +23,7 @@ should probably proofread and complete it, then remove this comment. -->
23
 
24
  This model is a fine-tuned version of [vidore/colpali-v1.3-hf](https://huggingface.co/vidore/colpali-v1.3-hf) on these datasets:
25
  - [selimc/tr-textbook-ColPali](https://huggingface.co/datasets/selimc/tr-textbook-ColPali)
26
- - [muhammetfatihaktug/bilim_teknik_mini_base_colpali](https://huggingface.co/datasets/muhammetfatihaktug/bilim_teknik_mini_base_colpali)
27
 
28
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/bs8zGLYCYPrjCs8JdsmjA.png)
29
 
@@ -40,7 +40,7 @@ This model is primarily designed for efficient indexing and retrieval of Turkish
40
  The training data was created via the following steps:
41
  - Downloading PDF files of Turkish textbooks and science magazines that are publicly available on the internet.
42
  - Using the [pdf-to-page-images-dataset](https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset) Space to convert the PDF documents into a single page image dataset
43
- - Use `gemini-2.0-flash-exp` to generate synthetic queries for these documents using the approach outlined [here](https://danielvanstrien.xyz/posts/post-with-code/colpali/2024-09-23-generate_colpali_dataset.html) with additional modifications. This results in [selimc/tr-textbook-ColPali](https://huggingface.co/datasets/selimc/tr-textbook-ColPali) and [muhammetfatihaktug/bilim_teknik_mini_base_colpali](https://huggingface.co/datasets/muhammetfatihaktug/bilim_teknik_mini_base_colpali).
44
  - Train the model using the fine tuning [notebook](https://github.com/merveenoyan/smol-vision/blob/main/Finetune_ColPali.ipynb?s=35) from [Merve Noyan](https://huggingface.co/merve). Data processing step was modified to include all 3 types of queries. This approach not only adds variety to the training data but also effectively triples the dataset size, helping the model learn to handle diverse query types.
45
 
46
  ## Usage
 
23
 
24
  This model is a fine-tuned version of [vidore/colpali-v1.3-hf](https://huggingface.co/vidore/colpali-v1.3-hf) on these datasets:
25
  - [selimc/tr-textbook-ColPali](https://huggingface.co/datasets/selimc/tr-textbook-ColPali)
26
+ - [muhammetfatihaktug/bilim_teknik_mini_base_colpali](https://huggingface.co/datasets/muhammetfatihaktug/bilim_teknik_mini_colpali)
27
 
28
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65281302cad797fc4abeffd7/bs8zGLYCYPrjCs8JdsmjA.png)
29
 
 
40
  The training data was created via the following steps:
41
  - Downloading PDF files of Turkish textbooks and science magazines that are publicly available on the internet.
42
  - Using the [pdf-to-page-images-dataset](https://huggingface.co/spaces/Dataset-Creation-Tools/pdf-to-page-images-dataset) Space to convert the PDF documents into a single page image dataset
43
+ - Use `gemini-2.0-flash-exp` to generate synthetic queries for these documents using the approach outlined [here](https://danielvanstrien.xyz/posts/post-with-code/colpali/2024-09-23-generate_colpali_dataset.html) with additional modifications. This results in [selimc/tr-textbook-ColPali](https://huggingface.co/datasets/selimc/tr-textbook-ColPali) and [muhammetfatihaktug/bilim_teknik_mini_base_colpali](https://huggingface.co/datasets/muhammetfatihaktug/bilim_teknik_mini_colpali).
44
  - Train the model using the fine tuning [notebook](https://github.com/merveenoyan/smol-vision/blob/main/Finetune_ColPali.ipynb?s=35) from [Merve Noyan](https://huggingface.co/merve). Data processing step was modified to include all 3 types of queries. This approach not only adds variety to the training data but also effectively triples the dataset size, helping the model learn to handle diverse query types.
45
 
46
  ## Usage