Datagemma-rag-27b-it-GGUF

Original Model

google/datagemma-rag-27b-it

Run with LlamaEdge

  • LlamaEdge version: v0.14.3 and above

  • Prompt template

    • Prompt type: gemma-instruct

    • Prompt string

      <bos><start_of_turn>user
      {user_message}<end_of_turn>
      <start_of_turn>model
      {model_message}<end_of_turn>model
      
  • Context size: 8192

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:datagemma-rag-27b-it-Q5_K_M.gguf \
      llama-api-server.wasm \
      --prompt-template gemma-instruct \
      --ctx-size 8192 \
      --model-name gemma-2-27b
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. \
      --nn-preload default:GGML:AUTO:datagemma-rag-27b-it-Q5_K_M.gguf \
      llama-chat.wasm \
      --prompt-template gemma-instruct \
      --ctx-size 8192
    

Quantized GGUF Models

Name Quant method Bits Size Use case
datagemma-rag-27b-it-Q2_K.gguf Q2_K 2 10.4 GB smallest, significant quality loss - not recommended for most purposes
datagemma-rag-27b-it-Q3_K_L.gguf Q3_K_L 3 14.5 GB small, substantial quality loss
datagemma-rag-27b-it-Q3_K_M.gguf Q3_K_M 3 13.4 GB very small, high quality loss
datagemma-rag-27b-it-Q3_K_S.gguf Q3_K_S 3 12.2 GB very small, high quality loss
datagemma-rag-27b-it-Q4_0.gguf Q4_0 4 15.6 GB legacy; small, very high quality loss - prefer using Q3_K_M
datagemma-rag-27b-it-Q4_K_M.gguf Q4_K_M 4 16.6 GB medium, balanced quality - recommended
datagemma-rag-27b-it-Q4_K_S.gguf Q4_K_S 4 15.7 GB small, greater quality loss
datagemma-rag-27b-it-Q5_0.gguf Q5_0 5 18.9 GB legacy; medium, balanced quality - prefer using Q4_K_M
datagemma-rag-27b-it-Q5_K_M.gguf Q5_K_M 5 19.4 GB large, very low quality loss - recommended
datagemma-rag-27b-it-Q5_K_S.gguf Q5_K_S 5 18.9 GB large, low quality loss - recommended
datagemma-rag-27b-it-Q6_K.gguf Q6_K 6 22.3 GB very large, extremely low quality loss
datagemma-rag-27b-it-Q8_0.gguf Q8_0 8 28.9 GB very large, extremely low quality loss - not recommended
datagemma-rag-27b-it-f16-00001-of-00002.gguf f16 16 29.9 GB
datagemma-rag-27b-it-f16-00002-of-00002.gguf f16 16 24.6 GB

Quantized with llama.cpp b3664

Downloads last month
5
GGUF
Model size
27.2B params
Architecture
gemma2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for second-state/datagemma-rag-27b-it-GGUF

Base model

google/gemma-2-27b
Quantized
(14)
this model