metadata
license: llama3.1
model_name: Meta-Llama-3.1-8B-Instruct-GGUF
arxiv: 2307.09288
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct-GGUF
inference: false
model_creator: Meta Llama3
model_type: llama
pipeline_tag: text-generation
quantized_by: Second State Inc.
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
Meta-Llama-3.1-8B-Instruct-GGUF
Original Model
meta-llama/Meta-Llama-3.1-8B-Instruct
Run with LlamaEdge
LlamaEdge version: v0.12.4 and above
Prompt template
Prompt type for chat:
llama-3-chat
Prompt string
<|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Prompt type for tool use:
llama-3-tool
Prompt string
<|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_message}<|eot_id|><|start_header_id|>user<|end_header_id|> Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables. [{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","description":"The temperature unit to use. Infer this from the users location.","enum":["celsius","fahrenheit"]}},"required":["location","unit"]}}}] Question: {user_message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Context size:
128000
Run as LlamaEdge service
Chat
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template llama-3-chat \ --ctx-size 128000 \ --model-name Llama-3.1-8b
Tool use
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template llama-3-tool \ --ctx-size 128000 \ --model-name Llama-3.1-8b
Run as LlamaEdge command app
wasmedge --dir .:. --nn-preload default:GGML:AUTO:Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template llama-3-chat \ --ctx-size 128000
Quantized GGUF Models
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
Meta-Llama-3.1-8B-Instruct-Q2_K.gguf | Q2_K | 2 | 3.18 GB | smallest, significant quality loss - not recommended for most purposes |
Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf | Q3_K_L | 3 | 4.32 GB | small, substantial quality loss |
Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf | Q3_K_M | 3 | 4.02 GB | very small, high quality loss |
Meta-Llama-3.1-8B-Instruct-Q3_K_S.gguf | Q3_K_S | 3 | 3.66 GB | very small, high quality loss |
Meta-Llama-3.1-8B-Instruct-Q4_0.gguf | Q4_0 | 4 | 4.66 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf | Q4_K_M | 4 | 4.92 GB | medium, balanced quality - recommended |
Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf | Q4_K_S | 4 | 4.69 GB | small, greater quality loss |
Meta-Llama-3.1-8B-Instruct-Q5_0.gguf | Q5_0 | 5 | 5.6 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf | Q5_K_M | 5 | 5.73 GB | large, very low quality loss - recommended |
Meta-Llama-3.1-8B-Instruct-Q5_K_S.gguf | Q5_K_S | 5 | 5.6 GB | large, low quality loss - recommended |
Meta-Llama-3.1-8B-Instruct-Q6_K.gguf | Q6_K | 6 | 6.6 GB | very large, extremely low quality loss |
Meta-Llama-3.1-8B-Instruct-Q8_0.gguf | Q8_0 | 8 | 8.54 GB | very large, extremely low quality loss - not recommended |
Meta-Llama-3.1-8B-Instruct-f16.gguf | f16 | 16 | 16.1 GB |
Quantized with llama.cpp b3445.