|
--- |
|
language: es |
|
license: gpl-3.0 |
|
tags: |
|
- spaCy |
|
- Token Classification |
|
widget: |
|
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." |
|
- text: "El proyecto lo financia el Ministerio de Industria y Competitividad." |
|
model-index: |
|
- name: es_spacy_ner_cds |
|
results: [] |
|
--- |
|
|
|
# Introduction |
|
|
|
spaCy NER model trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). |
|
|
|
## Usage |
|
|
|
You can use this model with the spaCy *pipeline* for NER. |
|
|
|
```python |
|
import spacy |
|
from spacy.pipeline import merge_entities |
|
|
|
|
|
nlp = spacy.load("es_spacy_ner_cds") |
|
nlp.add_pipe('sentencizer') |
|
|
|
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitiv |
|
idad." |
|
ner_pipe = nlp(example) |
|
|
|
print(ner_pipe.ents) |
|
for token in merge_entities(ner_pipe): |
|
print(token.text, token.ent_type_) |
|
``` |
|
|
|
## Dataset |
|
|
|
ToDo |
|
|
|
## Model performance |
|
|
|
entity|precision|recall|f1 |
|
-|-|-|- |
|
PER|0.942|0.890|0.915 |
|
ORG|0.869|0.688|0.768 |
|
LOC|0.975|0.987|0.981 |
|
MISC|0.854|0.757|0.803 |
|
micro avg|0.963|0.958|0.961 |
|
macro avg|0.910|0.831|0.867 |