|
# Stable Diffusion web UI |
|
A web interface for Stable Diffusion, implemented using Gradio library. |
|
|
|
![](screenshot.png) |
|
|
|
## Features |
|
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): |
|
- Original txt2img and img2img modes |
|
- One click install and run script (but you still must install python and git) |
|
- Outpainting |
|
- Inpainting |
|
- Color Sketch |
|
- Prompt Matrix |
|
- Stable Diffusion Upscale |
|
- Attention, specify parts of text that the model should pay more attention to |
|
- a man in a `((tuxedo))` - will pay more attention to tuxedo |
|
- a man in a `(tuxedo:1.21)` - alternative syntax |
|
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) |
|
- Loopback, run img2img processing multiple times |
|
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters |
|
- Textual Inversion |
|
- have as many embeddings as you want and use any names you like for them |
|
- use multiple embeddings with different numbers of vectors per token |
|
- works with half precision floating point numbers |
|
- train embeddings on 8GB (also reports of 6GB working) |
|
- Extras tab with: |
|
- GFPGAN, neural network that fixes faces |
|
- CodeFormer, face restoration tool as an alternative to GFPGAN |
|
- RealESRGAN, neural network upscaler |
|
- ESRGAN, neural network upscaler with a lot of third party models |
|
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers |
|
- LDSR, Latent diffusion super resolution upscaling |
|
- Resizing aspect ratio options |
|
- Sampling method selection |
|
- Adjust sampler eta values (noise multiplier) |
|
- More advanced noise setting options |
|
- Interrupt processing at any time |
|
- 4GB video card support (also reports of 2GB working) |
|
- Correct seeds for batches |
|
- Live prompt token length validation |
|
- Generation parameters |
|
- parameters you used to generate images are saved with that image |
|
- in PNG chunks for PNG, in EXIF for JPEG |
|
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI |
|
- can be disabled in settings |
|
- drag and drop an image/text-parameters to promptbox |
|
- Read Generation Parameters Button, loads parameters in promptbox to UI |
|
- Settings page |
|
- Running arbitrary python code from UI (must run with `--allow-code` to enable) |
|
- Mouseover hints for most UI elements |
|
- Possible to change defaults/mix/max/step values for UI elements via text config |
|
- Tiling support, a checkbox to create images that can be tiled like textures |
|
- Progress bar and live image generation preview |
|
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement |
|
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image |
|
- Styles, a way to save part of prompt and easily apply them via dropdown later |
|
- Variations, a way to generate same image but with tiny differences |
|
- Seed resizing, a way to generate same image but at slightly different resolution |
|
- CLIP interrogator, a button that tries to guess prompt from an image |
|
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway |
|
- Batch Processing, process a group of files using img2img |
|
- Img2img Alternative, reverse Euler method of cross attention control |
|
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions |
|
- Reloading checkpoints on the fly |
|
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one |
|
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community |
|
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once |
|
- separate prompts using uppercase `AND` |
|
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` |
|
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) |
|
- DeepDanbooru integration, creates danbooru style tags for anime prompts |
|
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) |
|
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI |
|
- Generate forever option |
|
- Training tab |
|
- hypernetworks and embeddings options |
|
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) |
|
- Clip skip |
|
- Hypernetworks |
|
- Loras (same as Hypernetworks but more pretty) |
|
- A separate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt |
|
- Can select to load a different VAE from settings screen |
|
- Estimated completion time in progress bar |
|
- API |
|
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML |
|
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) |
|
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions |
|
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions |
|
- Now without any bad letters! |
|
- Load checkpoints in safetensors format |
|
- Eased resolution restriction: generated image's dimensions must be a multiple of 8 rather than 64 |
|
- Now with a license! |
|
- Reorder elements in the UI from settings screen |
|
- [Segmind Stable Diffusion](https://huggingface.co/segmind/SSD-1B) support |
|
|
|
## Installation and Running |
|
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for: |
|
- [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) |
|
- [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. |
|
- [Intel CPUs, Intel GPUs (both integrated and discrete)](https://github.com/openvinotoolkit/stable-diffusion-webui/wiki/Installation-on-Intel-Silicon) (external wiki page) |
|
|
|
Alternatively, use online services (like Google Colab): |
|
|
|
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) |
|
|
|
### Installation on Windows 10/11 with NVidia-GPUs using release package |
|
1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract its contents. |
|
2. Run `update.bat`. |
|
3. Run `run.bat`. |
|
> For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) |
|
|
|
### Automatic Installation on Windows |
|
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". |
|
2. Install [git](https://git-scm.com/download/win). |
|
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. |
|
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. |
|
|
|
### Automatic Installation on Linux |
|
1. Install the dependencies: |
|
```bash |
|
# Debian-based: |
|
sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0 |
|
# Red Hat-based: |
|
sudo dnf install wget git python3 gperftools-libs libglvnd-glx |
|
# openSUSE-based: |
|
sudo zypper install wget git python3 libtcmalloc4 libglvnd |
|
# Arch-based: |
|
sudo pacman -S wget git python3 |
|
``` |
|
2. Navigate to the directory you would like the webui to be installed and execute the following command: |
|
```bash |
|
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh |
|
``` |
|
3. Run `webui.sh`. |
|
4. Check `webui-user.sh` for options. |
|
### Installation on Apple Silicon |
|
|
|
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). |
|
|
|
## Contributing |
|
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) |
|
|
|
## Documentation |
|
|
|
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). |
|
|
|
For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) [crawlable wiki](https://github-wiki-see.page/m/AUTOMATIC1111/stable-diffusion-webui/wiki). |
|
|
|
## Credits |
|
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. |
|
|
|
- Stable Diffusion - https://github.com/Stability-AI/stablediffusion, https://github.com/CompVis/taming-transformers |
|
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git |
|
- Spandrel - https://github.com/chaiNNer-org/spandrel implementing |
|
- GFPGAN - https://github.com/TencentARC/GFPGAN.git |
|
- CodeFormer - https://github.com/sczhou/CodeFormer |
|
- ESRGAN - https://github.com/xinntao/ESRGAN |
|
- SwinIR - https://github.com/JingyunLiang/SwinIR |
|
- Swin2SR - https://github.com/mv-lab/swin2sr |
|
- LDSR - https://github.com/Hafiidz/latent-diffusion |
|
- MiDaS - https://github.com/isl-org/MiDaS |
|
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion |
|
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. |
|
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) |
|
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) |
|
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). |
|
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd |
|
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot |
|
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator |
|
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch |
|
- xformers - https://github.com/facebookresearch/xformers |
|
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru |
|
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) |
|
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix |
|
- Security advice - RyotaK |
|
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC |
|
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd |
|
- LyCORIS - KohakuBlueleaf |
|
- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling |
|
- Hypertile - tfernd - https://github.com/tfernd/HyperTile |
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. |
|
- (You) |
|
|