mmlw-roberta-base / README.md
sdadas's picture
Update README.md
57e19d8 verified
|
raw
history blame
30.6 kB
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: mmlw-roberta-base
results:
- task:
type: Clustering
dataset:
type: PL-MTEB/8tags-clustering
name: MTEB 8TagsClustering
config: default
split: test
revision: None
metrics:
- type: v_measure
value: 33.08463724780795
- task:
type: Classification
dataset:
type: PL-MTEB/allegro-reviews
name: MTEB AllegroReviews
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 40.25844930417495
- type: f1
value: 35.59685265418916
- task:
type: Retrieval
dataset:
type: arguana-pl
name: MTEB ArguAna-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 33.073
- type: map_at_10
value: 50.223
- type: map_at_100
value: 50.942
- type: map_at_1000
value: 50.94499999999999
- type: map_at_3
value: 45.721000000000004
- type: map_at_5
value: 48.413000000000004
- type: mrr_at_1
value: 34.424
- type: mrr_at_10
value: 50.68899999999999
- type: mrr_at_100
value: 51.437999999999995
- type: mrr_at_1000
value: 51.441
- type: mrr_at_3
value: 46.219
- type: mrr_at_5
value: 48.921
- type: ndcg_at_1
value: 33.073
- type: ndcg_at_10
value: 59.021
- type: ndcg_at_100
value: 61.902
- type: ndcg_at_1000
value: 61.983999999999995
- type: ndcg_at_3
value: 49.818
- type: ndcg_at_5
value: 54.644999999999996
- type: precision_at_1
value: 33.073
- type: precision_at_10
value: 8.684
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.555
- type: precision_at_5
value: 14.666
- type: recall_at_1
value: 33.073
- type: recall_at_10
value: 86.842
- type: recall_at_100
value: 99.004
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 61.663999999999994
- type: recall_at_5
value: 73.329
- task:
type: Classification
dataset:
type: PL-MTEB/cbd
name: MTEB CBD
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 68.11
- type: ap
value: 20.916633959031266
- type: f1
value: 56.85804802205465
- task:
type: PairClassification
dataset:
type: PL-MTEB/cdsce-pairclassification
name: MTEB CDSC-E
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 89.2
- type: cos_sim_ap
value: 79.1041156765933
- type: cos_sim_f1
value: 70.0
- type: cos_sim_precision
value: 74.11764705882354
- type: cos_sim_recall
value: 66.3157894736842
- type: dot_accuracy
value: 88.2
- type: dot_ap
value: 72.57183688228149
- type: dot_f1
value: 67.16417910447761
- type: dot_precision
value: 63.67924528301887
- type: dot_recall
value: 71.05263157894737
- type: euclidean_accuracy
value: 89.3
- type: euclidean_ap
value: 79.01345533432428
- type: euclidean_f1
value: 70.19498607242339
- type: euclidean_precision
value: 74.55621301775149
- type: euclidean_recall
value: 66.3157894736842
- type: manhattan_accuracy
value: 89.3
- type: manhattan_ap
value: 79.01671381791259
- type: manhattan_f1
value: 70.0280112044818
- type: manhattan_precision
value: 74.8502994011976
- type: manhattan_recall
value: 65.78947368421053
- type: max_accuracy
value: 89.3
- type: max_ap
value: 79.1041156765933
- type: max_f1
value: 70.19498607242339
- task:
type: STS
dataset:
type: PL-MTEB/cdscr-sts
name: MTEB CDSC-R
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 91.79559442663039
- type: cos_sim_spearman
value: 92.5438168962641
- type: euclidean_pearson
value: 92.02981265332856
- type: euclidean_spearman
value: 92.5548245733484
- type: manhattan_pearson
value: 91.95296287979178
- type: manhattan_spearman
value: 92.50279516120241
- task:
type: Retrieval
dataset:
type: dbpedia-pl
name: MTEB DBPedia-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 7.829999999999999
- type: map_at_10
value: 16.616
- type: map_at_100
value: 23.629
- type: map_at_1000
value: 25.235999999999997
- type: map_at_3
value: 12.485
- type: map_at_5
value: 14.077
- type: mrr_at_1
value: 61.75000000000001
- type: mrr_at_10
value: 69.852
- type: mrr_at_100
value: 70.279
- type: mrr_at_1000
value: 70.294
- type: mrr_at_3
value: 68.375
- type: mrr_at_5
value: 69.187
- type: ndcg_at_1
value: 49.75
- type: ndcg_at_10
value: 36.217
- type: ndcg_at_100
value: 41.235
- type: ndcg_at_1000
value: 48.952
- type: ndcg_at_3
value: 41.669
- type: ndcg_at_5
value: 38.285000000000004
- type: precision_at_1
value: 61.5
- type: precision_at_10
value: 28.499999999999996
- type: precision_at_100
value: 9.572
- type: precision_at_1000
value: 2.025
- type: precision_at_3
value: 44.083
- type: precision_at_5
value: 36.3
- type: recall_at_1
value: 7.829999999999999
- type: recall_at_10
value: 21.462999999999997
- type: recall_at_100
value: 47.095
- type: recall_at_1000
value: 71.883
- type: recall_at_3
value: 13.891
- type: recall_at_5
value: 16.326999999999998
- task:
type: Retrieval
dataset:
type: fiqa-pl
name: MTEB FiQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.950000000000003
- type: map_at_10
value: 27.422
- type: map_at_100
value: 29.146
- type: map_at_1000
value: 29.328
- type: map_at_3
value: 23.735999999999997
- type: map_at_5
value: 25.671
- type: mrr_at_1
value: 33.796
- type: mrr_at_10
value: 42.689
- type: mrr_at_100
value: 43.522
- type: mrr_at_1000
value: 43.563
- type: mrr_at_3
value: 40.226
- type: mrr_at_5
value: 41.685
- type: ndcg_at_1
value: 33.642
- type: ndcg_at_10
value: 35.008
- type: ndcg_at_100
value: 41.839
- type: ndcg_at_1000
value: 45.035
- type: ndcg_at_3
value: 31.358999999999998
- type: ndcg_at_5
value: 32.377
- type: precision_at_1
value: 33.642
- type: precision_at_10
value: 9.937999999999999
- type: precision_at_100
value: 1.685
- type: precision_at_1000
value: 0.22699999999999998
- type: precision_at_3
value: 21.142
- type: precision_at_5
value: 15.586
- type: recall_at_1
value: 16.950000000000003
- type: recall_at_10
value: 42.286
- type: recall_at_100
value: 68.51899999999999
- type: recall_at_1000
value: 87.471
- type: recall_at_3
value: 28.834
- type: recall_at_5
value: 34.274
- task:
type: Retrieval
dataset:
type: hotpotqa-pl
name: MTEB HotpotQA-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.711
- type: map_at_10
value: 57.867999999999995
- type: map_at_100
value: 58.77
- type: map_at_1000
value: 58.836999999999996
- type: map_at_3
value: 54.400999999999996
- type: map_at_5
value: 56.564
- type: mrr_at_1
value: 75.449
- type: mrr_at_10
value: 81.575
- type: mrr_at_100
value: 81.783
- type: mrr_at_1000
value: 81.792
- type: mrr_at_3
value: 80.50399999999999
- type: mrr_at_5
value: 81.172
- type: ndcg_at_1
value: 75.422
- type: ndcg_at_10
value: 66.635
- type: ndcg_at_100
value: 69.85
- type: ndcg_at_1000
value: 71.179
- type: ndcg_at_3
value: 61.648
- type: ndcg_at_5
value: 64.412
- type: precision_at_1
value: 75.422
- type: precision_at_10
value: 13.962
- type: precision_at_100
value: 1.649
- type: precision_at_1000
value: 0.183
- type: precision_at_3
value: 39.172000000000004
- type: precision_at_5
value: 25.691000000000003
- type: recall_at_1
value: 37.711
- type: recall_at_10
value: 69.811
- type: recall_at_100
value: 82.471
- type: recall_at_1000
value: 91.29
- type: recall_at_3
value: 58.757999999999996
- type: recall_at_5
value: 64.227
- task:
type: Retrieval
dataset:
type: msmarco-pl
name: MTEB MSMARCO-PL
config: default
split: validation
revision: None
metrics:
- type: map_at_1
value: 17.033
- type: map_at_10
value: 27.242
- type: map_at_100
value: 28.451999999999998
- type: map_at_1000
value: 28.515
- type: map_at_3
value: 24.046
- type: map_at_5
value: 25.840999999999998
- type: mrr_at_1
value: 17.493
- type: mrr_at_10
value: 27.67
- type: mrr_at_100
value: 28.823999999999998
- type: mrr_at_1000
value: 28.881
- type: mrr_at_3
value: 24.529999999999998
- type: mrr_at_5
value: 26.27
- type: ndcg_at_1
value: 17.479
- type: ndcg_at_10
value: 33.048
- type: ndcg_at_100
value: 39.071
- type: ndcg_at_1000
value: 40.739999999999995
- type: ndcg_at_3
value: 26.493
- type: ndcg_at_5
value: 29.701
- type: precision_at_1
value: 17.479
- type: precision_at_10
value: 5.324
- type: precision_at_100
value: 0.8380000000000001
- type: precision_at_1000
value: 0.098
- type: precision_at_3
value: 11.408999999999999
- type: precision_at_5
value: 8.469999999999999
- type: recall_at_1
value: 17.033
- type: recall_at_10
value: 50.929
- type: recall_at_100
value: 79.262
- type: recall_at_1000
value: 92.239
- type: recall_at_3
value: 33.06
- type: recall_at_5
value: 40.747
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (pl)
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.31002017484867
- type: f1
value: 69.61603671063031
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (pl)
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.52790854068594
- type: f1
value: 75.4053872472259
- task:
type: Retrieval
dataset:
type: nfcorpus-pl
name: MTEB NFCorpus-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.877000000000001
- type: map_at_10
value: 12.817
- type: map_at_100
value: 16.247
- type: map_at_1000
value: 17.683
- type: map_at_3
value: 9.334000000000001
- type: map_at_5
value: 10.886999999999999
- type: mrr_at_1
value: 45.201
- type: mrr_at_10
value: 52.7
- type: mrr_at_100
value: 53.425999999999995
- type: mrr_at_1000
value: 53.461000000000006
- type: mrr_at_3
value: 50.464
- type: mrr_at_5
value: 51.827
- type: ndcg_at_1
value: 41.949999999999996
- type: ndcg_at_10
value: 34.144999999999996
- type: ndcg_at_100
value: 31.556
- type: ndcg_at_1000
value: 40.265
- type: ndcg_at_3
value: 38.07
- type: ndcg_at_5
value: 36.571
- type: precision_at_1
value: 44.272
- type: precision_at_10
value: 25.697
- type: precision_at_100
value: 8.077
- type: precision_at_1000
value: 2.084
- type: precision_at_3
value: 36.016999999999996
- type: precision_at_5
value: 31.703
- type: recall_at_1
value: 5.877000000000001
- type: recall_at_10
value: 16.986
- type: recall_at_100
value: 32.719
- type: recall_at_1000
value: 63.763000000000005
- type: recall_at_3
value: 10.292
- type: recall_at_5
value: 12.886000000000001
- task:
type: Retrieval
dataset:
type: nq-pl
name: MTEB NQ-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.476
- type: map_at_10
value: 38.67
- type: map_at_100
value: 39.784000000000006
- type: map_at_1000
value: 39.831
- type: map_at_3
value: 34.829
- type: map_at_5
value: 37.025000000000006
- type: mrr_at_1
value: 28.621000000000002
- type: mrr_at_10
value: 41.13
- type: mrr_at_100
value: 42.028
- type: mrr_at_1000
value: 42.059999999999995
- type: mrr_at_3
value: 37.877
- type: mrr_at_5
value: 39.763999999999996
- type: ndcg_at_1
value: 28.563
- type: ndcg_at_10
value: 45.654
- type: ndcg_at_100
value: 50.695
- type: ndcg_at_1000
value: 51.873999999999995
- type: ndcg_at_3
value: 38.359
- type: ndcg_at_5
value: 42.045
- type: precision_at_1
value: 28.563
- type: precision_at_10
value: 7.6450000000000005
- type: precision_at_100
value: 1.052
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 17.458000000000002
- type: precision_at_5
value: 12.613
- type: recall_at_1
value: 25.476
- type: recall_at_10
value: 64.484
- type: recall_at_100
value: 86.96199999999999
- type: recall_at_1000
value: 95.872
- type: recall_at_3
value: 45.527
- type: recall_at_5
value: 54.029
- task:
type: Classification
dataset:
type: laugustyniak/abusive-clauses-pl
name: MTEB PAC
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 65.87315377932232
- type: ap
value: 76.41966964416534
- type: f1
value: 63.64417488639012
- task:
type: PairClassification
dataset:
type: PL-MTEB/ppc-pairclassification
name: MTEB PPC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 87.7
- type: cos_sim_ap
value: 92.81319372631636
- type: cos_sim_f1
value: 90.04048582995952
- type: cos_sim_precision
value: 88.11410459587957
- type: cos_sim_recall
value: 92.05298013245033
- type: dot_accuracy
value: 75.0
- type: dot_ap
value: 83.63089957943261
- type: dot_f1
value: 80.76923076923077
- type: dot_precision
value: 75.43103448275862
- type: dot_recall
value: 86.9205298013245
- type: euclidean_accuracy
value: 87.7
- type: euclidean_ap
value: 92.94772245932825
- type: euclidean_f1
value: 90.10458567980692
- type: euclidean_precision
value: 87.63693270735524
- type: euclidean_recall
value: 92.71523178807946
- type: manhattan_accuracy
value: 87.8
- type: manhattan_ap
value: 92.95330512127123
- type: manhattan_f1
value: 90.08130081300813
- type: manhattan_precision
value: 88.49840255591054
- type: manhattan_recall
value: 91.72185430463577
- type: max_accuracy
value: 87.8
- type: max_ap
value: 92.95330512127123
- type: max_f1
value: 90.10458567980692
- task:
type: PairClassification
dataset:
type: PL-MTEB/psc-pairclassification
name: MTEB PSC
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 96.19666048237477
- type: cos_sim_ap
value: 98.61237969571302
- type: cos_sim_f1
value: 93.77845220030349
- type: cos_sim_precision
value: 93.35347432024169
- type: cos_sim_recall
value: 94.20731707317073
- type: dot_accuracy
value: 94.89795918367348
- type: dot_ap
value: 97.02853491357943
- type: dot_f1
value: 91.85185185185186
- type: dot_precision
value: 89.33717579250721
- type: dot_recall
value: 94.51219512195121
- type: euclidean_accuracy
value: 96.38218923933209
- type: euclidean_ap
value: 98.58145584134218
- type: euclidean_f1
value: 94.04580152671755
- type: euclidean_precision
value: 94.18960244648318
- type: euclidean_recall
value: 93.90243902439023
- type: manhattan_accuracy
value: 96.47495361781077
- type: manhattan_ap
value: 98.6108221024781
- type: manhattan_f1
value: 94.18960244648318
- type: manhattan_precision
value: 94.47852760736197
- type: manhattan_recall
value: 93.90243902439023
- type: max_accuracy
value: 96.47495361781077
- type: max_ap
value: 98.61237969571302
- type: max_f1
value: 94.18960244648318
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_in
name: MTEB PolEmo2.0-IN
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 71.73130193905818
- type: f1
value: 71.17731918813324
- task:
type: Classification
dataset:
type: PL-MTEB/polemo2_out
name: MTEB PolEmo2.0-OUT
config: default
split: test
revision: None
metrics:
- type: accuracy
value: 46.59919028340081
- type: f1
value: 37.216392949948954
- task:
type: Retrieval
dataset:
type: quora-pl
name: MTEB Quora-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 66.134
- type: map_at_10
value: 80.19
- type: map_at_100
value: 80.937
- type: map_at_1000
value: 80.95599999999999
- type: map_at_3
value: 77.074
- type: map_at_5
value: 79.054
- type: mrr_at_1
value: 75.88000000000001
- type: mrr_at_10
value: 83.226
- type: mrr_at_100
value: 83.403
- type: mrr_at_1000
value: 83.406
- type: mrr_at_3
value: 82.03200000000001
- type: mrr_at_5
value: 82.843
- type: ndcg_at_1
value: 75.94
- type: ndcg_at_10
value: 84.437
- type: ndcg_at_100
value: 86.13
- type: ndcg_at_1000
value: 86.29299999999999
- type: ndcg_at_3
value: 81.07799999999999
- type: ndcg_at_5
value: 83.0
- type: precision_at_1
value: 75.94
- type: precision_at_10
value: 12.953999999999999
- type: precision_at_100
value: 1.514
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 35.61
- type: precision_at_5
value: 23.652
- type: recall_at_1
value: 66.134
- type: recall_at_10
value: 92.991
- type: recall_at_100
value: 99.003
- type: recall_at_1000
value: 99.86
- type: recall_at_3
value: 83.643
- type: recall_at_5
value: 88.81099999999999
- task:
type: Retrieval
dataset:
type: scidocs-pl
name: MTEB SCIDOCS-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.183
- type: map_at_10
value: 10.626
- type: map_at_100
value: 12.485
- type: map_at_1000
value: 12.793
- type: map_at_3
value: 7.531000000000001
- type: map_at_5
value: 9.037
- type: mrr_at_1
value: 20.5
- type: mrr_at_10
value: 30.175
- type: mrr_at_100
value: 31.356
- type: mrr_at_1000
value: 31.421
- type: mrr_at_3
value: 26.900000000000002
- type: mrr_at_5
value: 28.689999999999998
- type: ndcg_at_1
value: 20.599999999999998
- type: ndcg_at_10
value: 17.84
- type: ndcg_at_100
value: 25.518
- type: ndcg_at_1000
value: 31.137999999999998
- type: ndcg_at_3
value: 16.677
- type: ndcg_at_5
value: 14.641000000000002
- type: precision_at_1
value: 20.599999999999998
- type: precision_at_10
value: 9.3
- type: precision_at_100
value: 2.048
- type: precision_at_1000
value: 0.33999999999999997
- type: precision_at_3
value: 15.533
- type: precision_at_5
value: 12.839999999999998
- type: recall_at_1
value: 4.183
- type: recall_at_10
value: 18.862000000000002
- type: recall_at_100
value: 41.592
- type: recall_at_1000
value: 69.037
- type: recall_at_3
value: 9.443
- type: recall_at_5
value: 13.028
- task:
type: PairClassification
dataset:
type: PL-MTEB/sicke-pl-pairclassification
name: MTEB SICK-E-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_accuracy
value: 86.32286995515696
- type: cos_sim_ap
value: 82.04302619416443
- type: cos_sim_f1
value: 74.95572086432874
- type: cos_sim_precision
value: 74.55954897815363
- type: cos_sim_recall
value: 75.35612535612536
- type: dot_accuracy
value: 83.9176518548716
- type: dot_ap
value: 76.8608733580272
- type: dot_f1
value: 72.31936654569449
- type: dot_precision
value: 67.36324523663184
- type: dot_recall
value: 78.06267806267806
- type: euclidean_accuracy
value: 86.32286995515696
- type: euclidean_ap
value: 81.9648986659308
- type: euclidean_f1
value: 74.93796526054591
- type: euclidean_precision
value: 74.59421312632321
- type: euclidean_recall
value: 75.28490028490027
- type: manhattan_accuracy
value: 86.30248675091724
- type: manhattan_ap
value: 81.92853980116878
- type: manhattan_f1
value: 74.80968858131489
- type: manhattan_precision
value: 72.74562584118439
- type: manhattan_recall
value: 76.99430199430199
- type: max_accuracy
value: 86.32286995515696
- type: max_ap
value: 82.04302619416443
- type: max_f1
value: 74.95572086432874
- task:
type: STS
dataset:
type: PL-MTEB/sickr-pl-sts
name: MTEB SICK-R-PL
config: default
split: test
revision: None
metrics:
- type: cos_sim_pearson
value: 83.07566183637853
- type: cos_sim_spearman
value: 79.20198022242548
- type: euclidean_pearson
value: 81.27875473517936
- type: euclidean_spearman
value: 79.21560102311153
- type: manhattan_pearson
value: 81.21559474880459
- type: manhattan_spearman
value: 79.1537846814979
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (pl)
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 36.39657573900194
- type: cos_sim_spearman
value: 40.36403461037013
- type: euclidean_pearson
value: 29.143416004776316
- type: euclidean_spearman
value: 40.43197841306375
- type: manhattan_pearson
value: 29.18632337290767
- type: manhattan_spearman
value: 40.50563343395481
- task:
type: Retrieval
dataset:
type: scifact-pl
name: MTEB SciFact-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 49.428
- type: map_at_10
value: 60.423
- type: map_at_100
value: 61.037
- type: map_at_1000
value: 61.065999999999995
- type: map_at_3
value: 56.989000000000004
- type: map_at_5
value: 59.041999999999994
- type: mrr_at_1
value: 52.666999999999994
- type: mrr_at_10
value: 61.746
- type: mrr_at_100
value: 62.273
- type: mrr_at_1000
value: 62.300999999999995
- type: mrr_at_3
value: 59.278
- type: mrr_at_5
value: 60.611000000000004
- type: ndcg_at_1
value: 52.333
- type: ndcg_at_10
value: 65.75
- type: ndcg_at_100
value: 68.566
- type: ndcg_at_1000
value: 69.314
- type: ndcg_at_3
value: 59.768
- type: ndcg_at_5
value: 62.808
- type: precision_at_1
value: 52.333
- type: precision_at_10
value: 9.167
- type: precision_at_100
value: 1.0630000000000002
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 23.778
- type: precision_at_5
value: 16.2
- type: recall_at_1
value: 49.428
- type: recall_at_10
value: 81.07799999999999
- type: recall_at_100
value: 93.93299999999999
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 65.061
- type: recall_at_5
value: 72.667
- task:
type: Retrieval
dataset:
type: trec-covid-pl
name: MTEB TRECCOVID-PL
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22100000000000003
- type: map_at_10
value: 1.788
- type: map_at_100
value: 9.937
- type: map_at_1000
value: 24.762999999999998
- type: map_at_3
value: 0.579
- type: map_at_5
value: 0.947
- type: mrr_at_1
value: 78.0
- type: mrr_at_10
value: 88.067
- type: mrr_at_100
value: 88.067
- type: mrr_at_1000
value: 88.067
- type: mrr_at_3
value: 87.667
- type: mrr_at_5
value: 88.067
- type: ndcg_at_1
value: 76.0
- type: ndcg_at_10
value: 71.332
- type: ndcg_at_100
value: 54.80500000000001
- type: ndcg_at_1000
value: 49.504999999999995
- type: ndcg_at_3
value: 73.693
- type: ndcg_at_5
value: 73.733
- type: precision_at_1
value: 82.0
- type: precision_at_10
value: 76.8
- type: precision_at_100
value: 56.68
- type: precision_at_1000
value: 22.236
- type: precision_at_3
value: 78.667
- type: precision_at_5
value: 79.2
- type: recall_at_1
value: 0.22100000000000003
- type: recall_at_10
value: 2.033
- type: recall_at_100
value: 13.431999999999999
- type: recall_at_1000
value: 46.913
- type: recall_at_3
value: 0.625
- type: recall_at_5
value: 1.052
language: pl
license: apache-2.0
widget:
- source_sentence: "zapytanie: Jak dożyć 100 lat?"
sentences:
- "Trzeba zdrowo się odżywiać i uprawiać sport."
- "Trzeba pić alkohol, imprezować i jeździć szybkimi autami."
- "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
---
<h1 align="center">MMLW-roberta-base</h1>
MMLW (muszę mieć lepszą wiadomość) are neural text encoders for Polish.
This is a distilled model that can be used to generate embeddings applicable to many tasks such as semantic similarity, clustering, information retrieval. The model can also serve as a base for further fine-tuning.
It transforms texts to 768 dimensional vectors.
The model was initialized with Polish RoBERTa checkpoint, and then trained with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) on a diverse corpus of 60 million Polish-English text pairs. We utilised [English FlagEmbeddings (BGE)](https://huggingface.co/BAAI/bge-base-en) as teacher models for distillation.
## Usage (Sentence-Transformers)
⚠️ Our embedding models require the use of specific prefixes and suffixes when encoding texts. For this model, each query should be preceded by the prefix **"zapytanie: "** ⚠️
You can use the model like this with [sentence-transformers](https://www.SBERT.net):
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
query_prefix = "zapytanie: "
answer_prefix = ""
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
answer_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
answer_prefix + "Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
answer_prefix + "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
model = SentenceTransformer("sdadas/mmlw-roberta-base")
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Trzeba zdrowo się odżywiać i uprawiać sport.
```
## Evaluation Results
- The model achieves an **Average Score** of **61.05** on the Polish Massive Text Embedding Benchmark (MTEB). See [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) for detailed results.
- The model achieves **NDCG@10** of **53.60** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results.
## Acknowledgements
This model was trained with the A100 GPU cluster support delivered by the Gdansk University of Technology within the TASK center initiative.
## Citation
```bibtex
@article{dadas2024pirb,
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
year={2024},
eprint={2402.13350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```