sd99 commited on
Commit
8dc3324
·
1 Parent(s): f1d0d09

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.57 +/- 0.96
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.80 +/- 0.16
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6039f6f0d976932a1458cbeac4e243f8d6d58e1adcd5deb57fd4e0f0fee6830
3
- size 107987
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d10d914402746c19e04715927e1d3eae28f6f8a4c80560f8452b4b0dd38e3dd
3
+ size 109496
a2c-PandaReachDense-v2/data CHANGED
@@ -4,14 +4,16 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f215df643a0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7f215df5cb70>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
- ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
 
15
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
  "optimizer_kwargs": {
17
  "alpha": 0.99,
@@ -41,24 +43,24 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1674054816011286371,
50
- "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbmgkv2xvgL9sw2w/vQ5lP6HnsT6fpMG+dFgJP334Eb8/uYS/9OADvyqQW796GKI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]]",
60
- "desired_goal": "[[-0.6422185 -1.0034003 0.9248569 ]\n [ 0.89475614 0.3474703 -0.37820908]\n [ 0.53650594 -0.5701979 -1.0369033 ]\n [-0.51515126 -0.8576685 1.266372 ]]",
61
- "observation": "[[0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,29 +68,29 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSXovV8tz7yesow+9Xw4vbq5uD0P4q88BDsyvQRmK7vrtIw+8i4SPhjGPT0chP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.11335219 -0.02529019 0.27480024]\n [-0.04504104 0.090198 0.0214701 ]\n [-0.04351331 -0.00261533 0.2748178 ]\n [ 0.1427572 0.0463315 0.12427542]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
- "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93Lf8b+UhpRSlIwBbJRLMowBdJRHQKRfGAe7tiR1fZQoaAZoCWgPQwgdrtUe9mILwJSGlFKUaBVLMmgWR0CkXtwBHTZydX2UKGgGaAloD0MIsFWCxeEM/7+UhpRSlGgVSzJoFkdApF6gK2KEWnV9lChoBmgJaA9DCPwdigJ9Ivm/lIaUUpRoFUsyaBZHQKReYtPpIMB1fZQoaAZoCWgPQwhN1qiHaBQNwJSGlFKUaBVLMmgWR0CkYDVktmL+dX2UKGgGaAloD0MIhdBBl3Do9b+UhpRSlGgVSzJoFkdApF/46ltTDXV9lChoBmgJaA9DCGLX9nZLsvq/lIaUUpRoFUsyaBZHQKRfvOBUaQ51fZQoaAZoCWgPQwg9uhEWFfEFwJSGlFKUaBVLMmgWR0CkX39HlOoHdX2UKGgGaAloD0MIr7Mh/8xAA8CUhpRSlGgVSzJoFkdApGEo2GZeA3V9lChoBmgJaA9DCPTEc7aAsADAlIaUUpRoFUsyaBZHQKRg7B5X2dx1fZQoaAZoCWgPQwjsbTMV4tH5v5SGlFKUaBVLMmgWR0CkYLARChN/dX2UKGgGaAloD0MIb9QK0/f6AMCUhpRSlGgVSzJoFkdApGByWLP2PHV9lChoBmgJaA9DCKlOB7KeGgrAlIaUUpRoFUsyaBZHQKRiGUUwi7l1fZQoaAZoCWgPQwiFsBpLWNv/v5SGlFKUaBVLMmgWR0CkYdysCDEndX2UKGgGaAloD0MIQQ3fwrpx/7+UhpRSlGgVSzJoFkdApGGgwoLG73V9lChoBmgJaA9DCEWcTrLVpQXAlIaUUpRoFUsyaBZHQKRhY1gH/tJ1fZQoaAZoCWgPQwjj4xOy87YIwJSGlFKUaBVLMmgWR0CkYxSpJf6XdX2UKGgGaAloD0MIbVm+LsO/+L+UhpRSlGgVSzJoFkdApGLYKD0163V9lChoBmgJaA9DCKqezD/6xg3AlIaUUpRoFUsyaBZHQKRinGyX2M91fZQoaAZoCWgPQwjHDipxHQMBwJSGlFKUaBVLMmgWR0CkYl6xxDLKdX2UKGgGaAloD0MITn6LTpaa87+UhpRSlGgVSzJoFkdApGQOilBQenV9lChoBmgJaA9DCE/nilJCMPu/lIaUUpRoFUsyaBZHQKRj0eBg/kh1fZQoaAZoCWgPQwiFtMagEwL5v5SGlFKUaBVLMmgWR0CkY5YV6/qPdX2UKGgGaAloD0MIeawZGeRu9b+UhpRSlGgVSzJoFkdApGNYtL+PzXV9lChoBmgJaA9DCKTGhJhLav2/lIaUUpRoFUsyaBZHQKRk9bGm1pl1fZQoaAZoCWgPQwh4fHvXoE8GwJSGlFKUaBVLMmgWR0CkZLk+HJtBdX2UKGgGaAloD0MIY/Aw7Zt7AMCUhpRSlGgVSzJoFkdApGR9opQUH3V9lChoBmgJaA9DCMMOY9LfS/2/lIaUUpRoFUsyaBZHQKRkQAAAAAB1fZQoaAZoCWgPQwjs3LQZpwEAwJSGlFKUaBVLMmgWR0CkZewZn+Q2dX2UKGgGaAloD0MISN+kaVC09b+UhpRSlGgVSzJoFkdApGWvbdrO7nV9lChoBmgJaA9DCOIEptO6jQDAlIaUUpRoFUsyaBZHQKRlc4lyBCl1fZQoaAZoCWgPQwjueJPfonMGwJSGlFKUaBVLMmgWR0CkZTXRoh6jdX2UKGgGaAloD0MI3bbvUX/dA8CUhpRSlGgVSzJoFkdApGbaWHDaXnV9lChoBmgJaA9DCGACt+7mKQrAlIaUUpRoFUsyaBZHQKRmnb+Lm6p1fZQoaAZoCWgPQwgC9WbUfLUCwJSGlFKUaBVLMmgWR0CkZmGwaBI4dX2UKGgGaAloD0MIuRyvQPRkDcCUhpRSlGgVSzJoFkdApGYkFr2xp3V9lChoBmgJaA9DCJtwr8xbdfy/lIaUUpRoFUsyaBZHQKRnzK02LpB1fZQoaAZoCWgPQwjVsyCU99EDwJSGlFKUaBVLMmgWR0CkZ5AQ6IWQdX2UKGgGaAloD0MI/KvHfau19b+UhpRSlGgVSzJoFkdApGdUBGQSz3V9lChoBmgJaA9DCCuk/KTaZ/e/lIaUUpRoFUsyaBZHQKRnFmpVCHB1fZQoaAZoCWgPQwgIclDCTNsQwJSGlFKUaBVLMmgWR0CkaMOa4MF2dX2UKGgGaAloD0MIdT48S5CxCsCUhpRSlGgVSzJoFkdApGiG6VdHD3V9lChoBmgJaA9DCJ3y6EZY1PW/lIaUUpRoFUsyaBZHQKRoSuCf6Gh1fZQoaAZoCWgPQwgT1sbYCS8DwJSGlFKUaBVLMmgWR0CkaA0x/NJOdX2UKGgGaAloD0MI7Z+nAYMk97+UhpRSlGgVSzJoFkdApGmz4N7SiXV9lChoBmgJaA9DCNnts8pMafq/lIaUUpRoFUsyaBZHQKRpd0nPVut1fZQoaAZoCWgPQwicFye+2hH1v5SGlFKUaBVLMmgWR0CkaTs2WIGhdX2UKGgGaAloD0MIoUliSbk7CsCUhpRSlGgVSzJoFkdApGj9fw7T2HV9lChoBmgJaA9DCGA97lutU/m/lIaUUpRoFUsyaBZHQKRqqzguRLd1fZQoaAZoCWgPQwgGZK93f7z+v5SGlFKUaBVLMmgWR0Ckam500WM1dX2UKGgGaAloD0MIQL0ZNV+lBMCUhpRSlGgVSzJoFkdApGoytHQQc3V9lChoBmgJaA9DCETBjClYowHAlIaUUpRoFUsyaBZHQKRp9UExIrh1fZQoaAZoCWgPQwjWGd8Xl4oKwJSGlFKUaBVLMmgWR0Cka55jx0+1dX2UKGgGaAloD0MIBDv+CwTB+L+UhpRSlGgVSzJoFkdApGthvUBnz3V9lChoBmgJaA9DCFVQUfUrnfe/lIaUUpRoFUsyaBZHQKRrJcVQAMl1fZQoaAZoCWgPQwhEpKZdTDPyv5SGlFKUaBVLMmgWR0CkaugpjMFEdX2UKGgGaAloD0MI7Zv7q8ddDsCUhpRSlGgVSzJoFkdApGysn7YTTXV9lChoBmgJaA9DCC3RWWYRKgPAlIaUUpRoFUsyaBZHQKRsb/+85CF1fZQoaAZoCWgPQwhTXcDLDJv8v5SGlFKUaBVLMmgWR0CkbDQzLwF1dX2UKGgGaAloD0MISG3i5H7H+r+UhpRSlGgVSzJoFkdApGv2xOclPnV9lChoBmgJaA9DCGco7niT3wbAlIaUUpRoFUsyaBZHQKRtpOWSlnB1fZQoaAZoCWgPQwhCCMiXUEH8v5SGlFKUaBVLMmgWR0CkbWiADq4ZdX2UKGgGaAloD0MIvYxiuaX1BMCUhpRSlGgVSzJoFkdApG0sgZCOWHV9lChoBmgJaA9DCL2mBwWlqPy/lIaUUpRoFUsyaBZHQKRs7t52Qnx1fZQoaAZoCWgPQwioGr0aoLTzv5SGlFKUaBVLMmgWR0CkbqOLiuMddX2UKGgGaAloD0MIhlj9EYaB+7+UhpRSlGgVSzJoFkdApG5m1fE4vXV9lChoBmgJaA9DCP0WnSy1nv6/lIaUUpRoFUsyaBZHQKRuKtsenyd1fZQoaAZoCWgPQwhGelG7XwX5v5SGlFKUaBVLMmgWR0Ckbe0m2LHddX2UKGgGaAloD0MI5WA2AYbl+L+UhpRSlGgVSzJoFkdApG+b7O3UhHV9lChoBmgJaA9DCDViZp/H6AXAlIaUUpRoFUsyaBZHQKRvX3ai9Ix1fZQoaAZoCWgPQwhmhSLdz+kCwJSGlFKUaBVLMmgWR0CkbyOGbkOqdX2UKGgGaAloD0MIcJUnEHYK87+UhpRSlGgVSzJoFkdApG7l6iTMaHV9lChoBmgJaA9DCIwVNZiGoQTAlIaUUpRoFUsyaBZHQKRwsasIVud1fZQoaAZoCWgPQwjik04kmOoAwJSGlFKUaBVLMmgWR0CkcHUD+zdDdX2UKGgGaAloD0MIXRd+cD6VA8CUhpRSlGgVSzJoFkdApHA5E6T4cnV9lChoBmgJaA9DCK6cvTPaSgPAlIaUUpRoFUsyaBZHQKRv+4y44Id1fZQoaAZoCWgPQwgHfentz4X/v5SGlFKUaBVLMmgWR0CkcaM7U5MldX2UKGgGaAloD0MI0lRP5h899b+UhpRSlGgVSzJoFkdApHFmtp22X3V9lChoBmgJaA9DCLnBUIcV7v+/lIaUUpRoFUsyaBZHQKRxKs/Y8Md1fZQoaAZoCWgPQwg18KMa9rv9v5SGlFKUaBVLMmgWR0CkcO0lzEJjdX2UKGgGaAloD0MIrROX4xUIB8CUhpRSlGgVSzJoFkdApHKeNcW0q3V9lChoBmgJaA9DCHLe/8cJU/q/lIaUUpRoFUsyaBZHQKRyYYm9g4R1fZQoaAZoCWgPQwhXJZF9kOX8v5SGlFKUaBVLMmgWR0CkciW2PT5PdX2UKGgGaAloD0MIRuo9ldNe/L+UhpRSlGgVSzJoFkdApHHn+IdlunV9lChoBmgJaA9DCJiHTPkQFPu/lIaUUpRoFUsyaBZHQKRzjw2ETQF1fZQoaAZoCWgPQwjkvP+PE6buv5SGlFKUaBVLMmgWR0Ckc1J0wJw9dX2UKGgGaAloD0MIlbiOccWFAsCUhpRSlGgVSzJoFkdApHMWdK/VRXV9lChoBmgJaA9DCK5hhsYTAQXAlIaUUpRoFUsyaBZHQKRy2OjIq9Z1fZQoaAZoCWgPQwiZZrrXSR0MwJSGlFKUaBVLMmgWR0CkdIZOzposdX2UKGgGaAloD0MIhlRRvMo6A8CUhpRSlGgVSzJoFkdApHRJwyZa3nV9lChoBmgJaA9DCNl3RfC/VQfAlIaUUpRoFUsyaBZHQKR0DacI7eV1fZQoaAZoCWgPQwjY9KCgFK39v5SGlFKUaBVLMmgWR0Ckc8/yXlbNdX2UKGgGaAloD0MIZw5JLZRM9b+UhpRSlGgVSzJoFkdApHVtuR9w33V9lChoBmgJaA9DCPYjRWRYhfe/lIaUUpRoFUsyaBZHQKR1MPf8/EB1fZQoaAZoCWgPQwhVLlT+tfz/v5SGlFKUaBVLMmgWR0CkdPTc6/7BdX2UKGgGaAloD0MIHxDoTNo0BcCUhpRSlGgVSzJoFkdApHS3SMLncXV9lChoBmgJaA9DCNnts8pM6fa/lIaUUpRoFUsyaBZHQKR2W48U21l1fZQoaAZoCWgPQwho7Es2HswAwJSGlFKUaBVLMmgWR0Ckdh9K/VRUdX2UKGgGaAloD0MI8u7IWG2+BcCUhpRSlGgVSzJoFkdApHXjaM72c3V9lChoBmgJaA9DCMCWV663jfW/lIaUUpRoFUsyaBZHQKR1pcUM5Ot1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
- "n_steps": 5,
88
  "gamma": 0.99,
89
- "gae_lambda": 1.0,
90
  "ent_coef": 0.0,
91
- "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
  "normalize_advantage": false
94
  }
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7948ffd310>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f7948ff59f0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
  "optimizer_kwargs": {
19
  "alpha": 0.99,
 
43
  "_np_random": null
44
  },
45
  "n_envs": 4,
46
+ "num_timesteps": 2000000,
47
+ "_total_timesteps": 2000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1674281961433133264,
52
+ "learning_rate": 0.00096,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5NPcPtV82js6VRA/5NPcPtV82js6VRA/5NPcPtV82js6VRA/5NPcPtV82js6VRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa0j9PFzorD+9kYQ/o7iqvxomjj8yMQG/2/LRv13pyj9x6J2/gGNAPvlQbL+KQcY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADk09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD2UaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]]",
62
+ "desired_goal": "[[ 0.03091832 1.350841 1.0356976 ]\n [-1.3337597 1.1105378 -0.5046569 ]\n [-1.6402239 1.5852467 -1.233656 ]\n [ 0.18787956 -0.92311054 1.5488751 ]]",
63
+ "observation": "[[0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]]"
64
  },
65
  "_last_episode_starts": {
66
  ":type:": "<class 'numpy.ndarray'>",
 
68
  },
69
  "_last_original_obs": {
70
  ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzs2xvTfQ/b37eoQ+ayTCvXnENr2Jka09G0GYvX+hvr0RewE+bQYQPm1w3j000TM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[-0.08681832 -0.12393229 0.25875077]\n [-0.09479602 -0.04462096 0.08475024]\n [-0.07434293 -0.09308147 0.12644602]\n [ 0.14064951 0.10861287 0.17560273]]",
74
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
  },
76
  "_episode_num": 0,
77
+ "use_sde": true,
78
  "sde_sample_freq": -1,
79
  "_current_progress_remaining": 0.0,
80
  "ep_info_buffer": {
81
  ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR450BkZe4r+UhpRSlIwBbJRLMowBdJRHQLUX681n/T91fZQoaAZoCWgPQwhgI0kQroDgv5SGlFKUaBVLMmgWR0C1F8QmZ3LWdX2UKGgGaAloD0MIYTYBhuXP37+UhpRSlGgVSzJoFkdAtRem/TLGJnV9lChoBmgJaA9DCA3eV+VCZea/lIaUUpRoFUsyaBZHQLUXhv4/NaB1fZQoaAZoCWgPQwgaogp/hrfhv5SGlFKUaBVLMmgWR0C1GIVkUbkwdX2UKGgGaAloD0MIjspN1NLc7L+UhpRSlGgVSzJoFkdAtRheJTER8XV9lChoBmgJaA9DCMQ/bOnR1Oa/lIaUUpRoFUsyaBZHQLUYQSamXPZ1fZQoaAZoCWgPQwiMZfol4i3mv5SGlFKUaBVLMmgWR0C1GCE9dNWVdX2UKGgGaAloD0MICqGDLuHQ7b+UhpRSlGgVSzJoFkdAtRkIMoc7yXV9lChoBmgJaA9DCLqilBCsKuG/lIaUUpRoFUsyaBZHQLUY4I+nqFB1fZQoaAZoCWgPQwhaETXR56Phv5SGlFKUaBVLMmgWR0C1GMONtIkJdX2UKGgGaAloD0MIW18ktOVc37+UhpRSlGgVSzJoFkdAtRijnwG4Z3V9lChoBmgJaA9DCPrsgOuKGdi/lIaUUpRoFUsyaBZHQLUZjVvMr3F1fZQoaAZoCWgPQwiTpkHRPADhv5SGlFKUaBVLMmgWR0C1GWW912aEdX2UKGgGaAloD0MI4PQu3o/b57+UhpRSlGgVSzJoFkdAtRlIk9lmOHV9lChoBmgJaA9DCHMSSl8IOeK/lIaUUpRoFUsyaBZHQLUZKJ/G2kV1fZQoaAZoCWgPQwiHTWTmAhflv5SGlFKUaBVLMmgWR0C1GgyGWUr1dX2UKGgGaAloD0MIiA/s+C+Q6r+UhpRSlGgVSzJoFkdAtRnk5ggHNXV9lChoBmgJaA9DCBXJVwIpsb+/lIaUUpRoFUsyaBZHQLUZx8JD3M91fZQoaAZoCWgPQwiNJhdjYJ3hv5SGlFKUaBVLMmgWR0C1GafRVp9JdX2UKGgGaAloD0MIL6UuGcdI0b+UhpRSlGgVSzJoFkdAtRqNsKsuF3V9lChoBmgJaA9DCL2mBwWlaMu/lIaUUpRoFUsyaBZHQLUaZhAGB4F1fZQoaAZoCWgPQwhDyk+qfTrYv5SGlFKUaBVLMmgWR0C1GkjrNW2gdX2UKGgGaAloD0MIPzkKEAUzyL+UhpRSlGgVSzJoFkdAtRoo5U96knV9lChoBmgJaA9DCPVMLzGW6dK/lIaUUpRoFUsyaBZHQLUbDpwjt5V1fZQoaAZoCWgPQwgNAFXcuMXkv5SGlFKUaBVLMmgWR0C1GucG1QZXdX2UKGgGaAloD0MIoFG69C9J5b+UhpRSlGgVSzJoFkdAtRrJ6+nIhnV9lChoBmgJaA9DCHRhpBe1++e/lIaUUpRoFUsyaBZHQLUaqfHPu5V1fZQoaAZoCWgPQwiVZvM4DGbmv5SGlFKUaBVLMmgWR0C1G5GEwnIAdX2UKGgGaAloD0MIc9u+R/311r+UhpRSlGgVSzJoFkdAtRtp3t8eCHV9lChoBmgJaA9DCKjF4GHaN9i/lIaUUpRoFUsyaBZHQLUbTQ6IWP91fZQoaAZoCWgPQwjXoC+9/bnbv5SGlFKUaBVLMmgWR0C1Gy0XpGF0dX2UKGgGaAloD0MIuHNhpBc147+UhpRSlGgVSzJoFkdAtRwLphWo33V9lChoBmgJaA9DCGh4swbvq8q/lIaUUpRoFUsyaBZHQLUb4/9YOlR1fZQoaAZoCWgPQwg4ukp319nYv5SGlFKUaBVLMmgWR0C1G8bTDwYtdX2UKGgGaAloD0MIFjPC24OQ77+UhpRSlGgVSzJoFkdAtRum1kUbk3V9lChoBmgJaA9DCBO2n4zx4eS/lIaUUpRoFUsyaBZHQLUcjyZrpJR1fZQoaAZoCWgPQwgaNsr6zcTTv5SGlFKUaBVLMmgWR0C1HGeJtSAIdX2UKGgGaAloD0MIttsuNNdp4L+UhpRSlGgVSzJoFkdAtRxKfPHDJnV9lChoBmgJaA9DCCKmRBK9DOS/lIaUUpRoFUsyaBZHQLUcKpSaVlh1fZQoaAZoCWgPQwheSIeHMH7nv5SGlFKUaBVLMmgWR0C1HQ/VNHpbdX2UKGgGaAloD0MIW2H6XkNw2L+UhpRSlGgVSzJoFkdAtRzoL6UJOXV9lChoBmgJaA9DCEN1c/G3Pd2/lIaUUpRoFUsyaBZHQLUcyxagVXV1fZQoaAZoCWgPQwgi41Eq4QnBv5SGlFKUaBVLMmgWR0C1HKsoYvWZdX2UKGgGaAloD0MIrqBpiZVR4r+UhpRSlGgVSzJoFkdAtR2WETQE6nV9lChoBmgJaA9DCLwhjQqcbOG/lIaUUpRoFUsyaBZHQLUdbnEETxp1fZQoaAZoCWgPQwjVB5J3DmXKv5SGlFKUaBVLMmgWR0C1HVFdszl+dX2UKGgGaAloD0MI9u0kIvyL3L+UhpRSlGgVSzJoFkdAtR0xb8m8d3V9lChoBmgJaA9DCAt/hjdrcOW/lIaUUpRoFUsyaBZHQLUePXYUWVN1fZQoaAZoCWgPQwjF4jeFlQrZv5SGlFKUaBVLMmgWR0C1HhXtfG+9dX2UKGgGaAloD0MIehubHam+3r+UhpRSlGgVSzJoFkdAtR3477sOXnV9lChoBmgJaA9DCNrJ4Ch59e+/lIaUUpRoFUsyaBZHQLUd2ZJTVDt1fZQoaAZoCWgPQwgmcVZETXTvv5SGlFKUaBVLMmgWR0C1HrrlJYkndX2UKGgGaAloD0MIzhq8r8pF8r+UhpRSlGgVSzJoFkdAtR6TR+jM3nV9lChoBmgJaA9DCLG/7J48LNK/lIaUUpRoFUsyaBZHQLUedis4ku91fZQoaAZoCWgPQwggQlw5e2fev5SGlFKUaBVLMmgWR0C1HlYsiB5HdX2UKGgGaAloD0MIoIhFDDuM2r+UhpRSlGgVSzJoFkdAtR85C0F8onV9lChoBmgJaA9DCLvSMlLvqee/lIaUUpRoFUsyaBZHQLUfEWn0kGB1fZQoaAZoCWgPQwiGAyFZwITlv5SGlFKUaBVLMmgWR0C1HvRaLXMAdX2UKGgGaAloD0MIRzzZzYx+3r+UhpRSlGgVSzJoFkdAtR7UXBP9DXV9lChoBmgJaA9DCAH5Eio4POq/lIaUUpRoFUsyaBZHQLUfvlNlAeJ1fZQoaAZoCWgPQwj1hCUeUDbnv5SGlFKUaBVLMmgWR0C1H5a33HrAdX2UKGgGaAloD0MIoBaDh2lf7r+UhpRSlGgVSzJoFkdAtR95rP+n63V9lChoBmgJaA9DCGheDrvvGNW/lIaUUpRoFUsyaBZHQLUfWbp/wy91fZQoaAZoCWgPQwicbtkh/mHrv5SGlFKUaBVLMmgWR0C1IEKW5YozdX2UKGgGaAloD0MIPNwODYvR6L+UhpRSlGgVSzJoFkdAtSAa2SdOI3V9lChoBmgJaA9DCCKMn8a9+ey/lIaUUpRoFUsyaBZHQLUf/cjZ+QV1fZQoaAZoCWgPQwjqJFtdTgnbv5SGlFKUaBVLMmgWR0C1H93eenQ6dX2UKGgGaAloD0MIMVwdAHFX0L+UhpRSlGgVSzJoFkdAtSDMMhHLBHV9lChoBmgJaA9DCNI1k2+2OfK/lIaUUpRoFUsyaBZHQLUgpJnQID51fZQoaAZoCWgPQwggeedQhqrev5SGlFKUaBVLMmgWR0C1IId6HCXQdX2UKGgGaAloD0MIJemayTdb8L+UhpRSlGgVSzJoFkdAtSBnjKgZj3V9lChoBmgJaA9DCNIb7iO3puW/lIaUUpRoFUsyaBZHQLUhVwqAjIJ1fZQoaAZoCWgPQwhgH5268lnsv5SGlFKUaBVLMmgWR0C1IS970Fr3dX2UKGgGaAloD0MI51JcVfZd67+UhpRSlGgVSzJoFkdAtSESinHeanV9lChoBmgJaA9DCIeKcf4mFOa/lIaUUpRoFUsyaBZHQLUg8pTMqz91fZQoaAZoCWgPQwhu36P+eoXlv5SGlFKUaBVLMmgWR0C1IdoScslLdX2UKGgGaAloD0MIOzlDcceb47+UhpRSlGgVSzJoFkdAtSGycqe9SXV9lChoBmgJaA9DCNyg9ls7UeW/lIaUUpRoFUsyaBZHQLUhlXAuZkV1fZQoaAZoCWgPQwj8NsR4zavdv5SGlFKUaBVLMmgWR0C1IXVkhA4XdX2UKGgGaAloD0MIz/boDfeR8L+UhpRSlGgVSzJoFkdAtSJjuG9HtnV9lChoBmgJaA9DCGFtjJ3wkuy/lIaUUpRoFUsyaBZHQLUiPB4Uvf11fZQoaAZoCWgPQwgbSBebVkryv5SGlFKUaBVLMmgWR0C1Ih8fms/6dX2UKGgGaAloD0MIr0Ffevvz6L+UhpRSlGgVSzJoFkdAtSH/QID5kHV9lChoBmgJaA9DCOWAXU2e8vC/lIaUUpRoFUsyaBZHQLUi6vECNjt1fZQoaAZoCWgPQwj356Ih49Hiv5SGlFKUaBVLMmgWR0C1IsNQsPJ8dX2UKGgGaAloD0MIFTyFXKln57+UhpRSlGgVSzJoFkdAtSKmPxQSBnV9lChoBmgJaA9DCHU8ZqAy/uC/lIaUUpRoFUsyaBZHQLUihlRP4211fZQoaAZoCWgPQwjDD86njlXQv5SGlFKUaBVLMmgWR0C1I36qbSZ0dX2UKGgGaAloD0MIdJZZhGIr27+UhpRSlGgVSzJoFkdAtSNW76Hj63V9lChoBmgJaA9DCINqgxPRL+q/lIaUUpRoFUsyaBZHQLUjOeBg/kh1fZQoaAZoCWgPQwg7pu7KLpjrv5SGlFKUaBVLMmgWR0C1Ixo95hScdX2UKGgGaAloD0MImdh8XBvq8L+UhpRSlGgVSzJoFkdAtSP+14Pf9HV9lChoBmgJaA9DCBMn9zsUxfK/lIaUUpRoFUsyaBZHQLUj1zcRDkV1fZQoaAZoCWgPQwgKZkzBGufuv5SGlFKUaBVLMmgWR0C1I7n93r2QdX2UKGgGaAloD0MI4ba28LxU6b+UhpRSlGgVSzJoFkdAtSOaBmPHUHV9lChoBmgJaA9DCGvWGd8Xl9q/lIaUUpRoFUsyaBZHQLUkhMWGh251fZQoaAZoCWgPQwhG0JhJ1AvXv5SGlFKUaBVLMmgWR0C1JF0wSJ0odX2UKGgGaAloD0MIqnzPSIRG5b+UhpRSlGgVSzJoFkdAtSRAKE3843V9lChoBmgJaA9DCKon84++CfG/lIaUUpRoFUsyaBZHQLUkICLdepp1ZS4="
83
  },
84
  "ep_success_buffer": {
85
  ":type:": "<class 'collections.deque'>",
86
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
  },
88
+ "_n_updates": 62500,
89
+ "n_steps": 8,
90
  "gamma": 0.99,
91
+ "gae_lambda": 0.9,
92
  "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
  "max_grad_norm": 0.5,
95
  "normalize_advantage": false
96
  }
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:560c205a086de99575e37f57f3f42633bba10399c92bbecfff654111556ecdf9
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a8fda2ff40199ec940c9548e07714890cead085c0cc65edded2f20349023a67
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5de9958544632efa5b808b6646e7d4b27952ded45e3458ac1fad3120fd463658
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44d0eb72f41df0ae5a019064d5478f943b27a783d58bf382ff9209c7f74df71a
3
+ size 46718
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f215df643a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f215df5cb70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674054816011286371, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbmgkv2xvgL9sw2w/vQ5lP6HnsT6fpMG+dFgJP334Eb8/uYS/9OADvyqQW796GKI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]]", "desired_goal": "[[-0.6422185 -1.0034003 0.9248569 ]\n [ 0.89475614 0.3474703 -0.37820908]\n [ 0.53650594 -0.5701979 -1.0369033 ]\n [-0.51515126 -0.8576685 1.266372 ]]", "observation": "[[0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSXovV8tz7yesow+9Xw4vbq5uD0P4q88BDsyvQRmK7vrtIw+8i4SPhjGPT0chP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11335219 -0.02529019 0.27480024]\n [-0.04504104 0.090198 0.0214701 ]\n [-0.04351331 -0.00261533 0.2748178 ]\n [ 0.1427572 0.0463315 0.12427542]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93Lf8b+UhpRSlIwBbJRLMowBdJRHQKRfGAe7tiR1fZQoaAZoCWgPQwgdrtUe9mILwJSGlFKUaBVLMmgWR0CkXtwBHTZydX2UKGgGaAloD0MIsFWCxeEM/7+UhpRSlGgVSzJoFkdApF6gK2KEWnV9lChoBmgJaA9DCPwdigJ9Ivm/lIaUUpRoFUsyaBZHQKReYtPpIMB1fZQoaAZoCWgPQwhN1qiHaBQNwJSGlFKUaBVLMmgWR0CkYDVktmL+dX2UKGgGaAloD0MIhdBBl3Do9b+UhpRSlGgVSzJoFkdApF/46ltTDXV9lChoBmgJaA9DCGLX9nZLsvq/lIaUUpRoFUsyaBZHQKRfvOBUaQ51fZQoaAZoCWgPQwg9uhEWFfEFwJSGlFKUaBVLMmgWR0CkX39HlOoHdX2UKGgGaAloD0MIr7Mh/8xAA8CUhpRSlGgVSzJoFkdApGEo2GZeA3V9lChoBmgJaA9DCPTEc7aAsADAlIaUUpRoFUsyaBZHQKRg7B5X2dx1fZQoaAZoCWgPQwjsbTMV4tH5v5SGlFKUaBVLMmgWR0CkYLARChN/dX2UKGgGaAloD0MIb9QK0/f6AMCUhpRSlGgVSzJoFkdApGByWLP2PHV9lChoBmgJaA9DCKlOB7KeGgrAlIaUUpRoFUsyaBZHQKRiGUUwi7l1fZQoaAZoCWgPQwiFsBpLWNv/v5SGlFKUaBVLMmgWR0CkYdysCDEndX2UKGgGaAloD0MIQQ3fwrpx/7+UhpRSlGgVSzJoFkdApGGgwoLG73V9lChoBmgJaA9DCEWcTrLVpQXAlIaUUpRoFUsyaBZHQKRhY1gH/tJ1fZQoaAZoCWgPQwjj4xOy87YIwJSGlFKUaBVLMmgWR0CkYxSpJf6XdX2UKGgGaAloD0MIbVm+LsO/+L+UhpRSlGgVSzJoFkdApGLYKD0163V9lChoBmgJaA9DCKqezD/6xg3AlIaUUpRoFUsyaBZHQKRinGyX2M91fZQoaAZoCWgPQwjHDipxHQMBwJSGlFKUaBVLMmgWR0CkYl6xxDLKdX2UKGgGaAloD0MITn6LTpaa87+UhpRSlGgVSzJoFkdApGQOilBQenV9lChoBmgJaA9DCE/nilJCMPu/lIaUUpRoFUsyaBZHQKRj0eBg/kh1fZQoaAZoCWgPQwiFtMagEwL5v5SGlFKUaBVLMmgWR0CkY5YV6/qPdX2UKGgGaAloD0MIeawZGeRu9b+UhpRSlGgVSzJoFkdApGNYtL+PzXV9lChoBmgJaA9DCKTGhJhLav2/lIaUUpRoFUsyaBZHQKRk9bGm1pl1fZQoaAZoCWgPQwh4fHvXoE8GwJSGlFKUaBVLMmgWR0CkZLk+HJtBdX2UKGgGaAloD0MIY/Aw7Zt7AMCUhpRSlGgVSzJoFkdApGR9opQUH3V9lChoBmgJaA9DCMMOY9LfS/2/lIaUUpRoFUsyaBZHQKRkQAAAAAB1fZQoaAZoCWgPQwjs3LQZpwEAwJSGlFKUaBVLMmgWR0CkZewZn+Q2dX2UKGgGaAloD0MISN+kaVC09b+UhpRSlGgVSzJoFkdApGWvbdrO7nV9lChoBmgJaA9DCOIEptO6jQDAlIaUUpRoFUsyaBZHQKRlc4lyBCl1fZQoaAZoCWgPQwjueJPfonMGwJSGlFKUaBVLMmgWR0CkZTXRoh6jdX2UKGgGaAloD0MI3bbvUX/dA8CUhpRSlGgVSzJoFkdApGbaWHDaXnV9lChoBmgJaA9DCGACt+7mKQrAlIaUUpRoFUsyaBZHQKRmnb+Lm6p1fZQoaAZoCWgPQwgC9WbUfLUCwJSGlFKUaBVLMmgWR0CkZmGwaBI4dX2UKGgGaAloD0MIuRyvQPRkDcCUhpRSlGgVSzJoFkdApGYkFr2xp3V9lChoBmgJaA9DCJtwr8xbdfy/lIaUUpRoFUsyaBZHQKRnzK02LpB1fZQoaAZoCWgPQwjVsyCU99EDwJSGlFKUaBVLMmgWR0CkZ5AQ6IWQdX2UKGgGaAloD0MI/KvHfau19b+UhpRSlGgVSzJoFkdApGdUBGQSz3V9lChoBmgJaA9DCCuk/KTaZ/e/lIaUUpRoFUsyaBZHQKRnFmpVCHB1fZQoaAZoCWgPQwgIclDCTNsQwJSGlFKUaBVLMmgWR0CkaMOa4MF2dX2UKGgGaAloD0MIdT48S5CxCsCUhpRSlGgVSzJoFkdApGiG6VdHD3V9lChoBmgJaA9DCJ3y6EZY1PW/lIaUUpRoFUsyaBZHQKRoSuCf6Gh1fZQoaAZoCWgPQwgT1sbYCS8DwJSGlFKUaBVLMmgWR0CkaA0x/NJOdX2UKGgGaAloD0MI7Z+nAYMk97+UhpRSlGgVSzJoFkdApGmz4N7SiXV9lChoBmgJaA9DCNnts8pMafq/lIaUUpRoFUsyaBZHQKRpd0nPVut1fZQoaAZoCWgPQwicFye+2hH1v5SGlFKUaBVLMmgWR0CkaTs2WIGhdX2UKGgGaAloD0MIoUliSbk7CsCUhpRSlGgVSzJoFkdApGj9fw7T2HV9lChoBmgJaA9DCGA97lutU/m/lIaUUpRoFUsyaBZHQKRqqzguRLd1fZQoaAZoCWgPQwgGZK93f7z+v5SGlFKUaBVLMmgWR0Ckam500WM1dX2UKGgGaAloD0MIQL0ZNV+lBMCUhpRSlGgVSzJoFkdApGoytHQQc3V9lChoBmgJaA9DCETBjClYowHAlIaUUpRoFUsyaBZHQKRp9UExIrh1fZQoaAZoCWgPQwjWGd8Xl4oKwJSGlFKUaBVLMmgWR0Cka55jx0+1dX2UKGgGaAloD0MIBDv+CwTB+L+UhpRSlGgVSzJoFkdApGthvUBnz3V9lChoBmgJaA9DCFVQUfUrnfe/lIaUUpRoFUsyaBZHQKRrJcVQAMl1fZQoaAZoCWgPQwhEpKZdTDPyv5SGlFKUaBVLMmgWR0CkaugpjMFEdX2UKGgGaAloD0MI7Zv7q8ddDsCUhpRSlGgVSzJoFkdApGysn7YTTXV9lChoBmgJaA9DCC3RWWYRKgPAlIaUUpRoFUsyaBZHQKRsb/+85CF1fZQoaAZoCWgPQwhTXcDLDJv8v5SGlFKUaBVLMmgWR0CkbDQzLwF1dX2UKGgGaAloD0MISG3i5H7H+r+UhpRSlGgVSzJoFkdApGv2xOclPnV9lChoBmgJaA9DCGco7niT3wbAlIaUUpRoFUsyaBZHQKRtpOWSlnB1fZQoaAZoCWgPQwhCCMiXUEH8v5SGlFKUaBVLMmgWR0CkbWiADq4ZdX2UKGgGaAloD0MIvYxiuaX1BMCUhpRSlGgVSzJoFkdApG0sgZCOWHV9lChoBmgJaA9DCL2mBwWlqPy/lIaUUpRoFUsyaBZHQKRs7t52Qnx1fZQoaAZoCWgPQwioGr0aoLTzv5SGlFKUaBVLMmgWR0CkbqOLiuMddX2UKGgGaAloD0MIhlj9EYaB+7+UhpRSlGgVSzJoFkdApG5m1fE4vXV9lChoBmgJaA9DCP0WnSy1nv6/lIaUUpRoFUsyaBZHQKRuKtsenyd1fZQoaAZoCWgPQwhGelG7XwX5v5SGlFKUaBVLMmgWR0Ckbe0m2LHddX2UKGgGaAloD0MI5WA2AYbl+L+UhpRSlGgVSzJoFkdApG+b7O3UhHV9lChoBmgJaA9DCDViZp/H6AXAlIaUUpRoFUsyaBZHQKRvX3ai9Ix1fZQoaAZoCWgPQwhmhSLdz+kCwJSGlFKUaBVLMmgWR0CkbyOGbkOqdX2UKGgGaAloD0MIcJUnEHYK87+UhpRSlGgVSzJoFkdApG7l6iTMaHV9lChoBmgJaA9DCIwVNZiGoQTAlIaUUpRoFUsyaBZHQKRwsasIVud1fZQoaAZoCWgPQwjik04kmOoAwJSGlFKUaBVLMmgWR0CkcHUD+zdDdX2UKGgGaAloD0MIXRd+cD6VA8CUhpRSlGgVSzJoFkdApHA5E6T4cnV9lChoBmgJaA9DCK6cvTPaSgPAlIaUUpRoFUsyaBZHQKRv+4y44Id1fZQoaAZoCWgPQwgHfentz4X/v5SGlFKUaBVLMmgWR0CkcaM7U5MldX2UKGgGaAloD0MI0lRP5h899b+UhpRSlGgVSzJoFkdApHFmtp22X3V9lChoBmgJaA9DCLnBUIcV7v+/lIaUUpRoFUsyaBZHQKRxKs/Y8Md1fZQoaAZoCWgPQwg18KMa9rv9v5SGlFKUaBVLMmgWR0CkcO0lzEJjdX2UKGgGaAloD0MIrROX4xUIB8CUhpRSlGgVSzJoFkdApHKeNcW0q3V9lChoBmgJaA9DCHLe/8cJU/q/lIaUUpRoFUsyaBZHQKRyYYm9g4R1fZQoaAZoCWgPQwhXJZF9kOX8v5SGlFKUaBVLMmgWR0CkciW2PT5PdX2UKGgGaAloD0MIRuo9ldNe/L+UhpRSlGgVSzJoFkdApHHn+IdlunV9lChoBmgJaA9DCJiHTPkQFPu/lIaUUpRoFUsyaBZHQKRzjw2ETQF1fZQoaAZoCWgPQwjkvP+PE6buv5SGlFKUaBVLMmgWR0Ckc1J0wJw9dX2UKGgGaAloD0MIlbiOccWFAsCUhpRSlGgVSzJoFkdApHMWdK/VRXV9lChoBmgJaA9DCK5hhsYTAQXAlIaUUpRoFUsyaBZHQKRy2OjIq9Z1fZQoaAZoCWgPQwiZZrrXSR0MwJSGlFKUaBVLMmgWR0CkdIZOzposdX2UKGgGaAloD0MIhlRRvMo6A8CUhpRSlGgVSzJoFkdApHRJwyZa3nV9lChoBmgJaA9DCNl3RfC/VQfAlIaUUpRoFUsyaBZHQKR0DacI7eV1fZQoaAZoCWgPQwjY9KCgFK39v5SGlFKUaBVLMmgWR0Ckc8/yXlbNdX2UKGgGaAloD0MIZw5JLZRM9b+UhpRSlGgVSzJoFkdApHVtuR9w33V9lChoBmgJaA9DCPYjRWRYhfe/lIaUUpRoFUsyaBZHQKR1MPf8/EB1fZQoaAZoCWgPQwhVLlT+tfz/v5SGlFKUaBVLMmgWR0CkdPTc6/7BdX2UKGgGaAloD0MIHxDoTNo0BcCUhpRSlGgVSzJoFkdApHS3SMLncXV9lChoBmgJaA9DCNnts8pM6fa/lIaUUpRoFUsyaBZHQKR2W48U21l1fZQoaAZoCWgPQwho7Es2HswAwJSGlFKUaBVLMmgWR0Ckdh9K/VRUdX2UKGgGaAloD0MI8u7IWG2+BcCUhpRSlGgVSzJoFkdApHXjaM72c3V9lChoBmgJaA9DCMCWV663jfW/lIaUUpRoFUsyaBZHQKR1pcUM5Ot1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7948ffd310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7948ff59f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674281961433133264, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5NPcPtV82js6VRA/5NPcPtV82js6VRA/5NPcPtV82js6VRA/5NPcPtV82js6VRA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAa0j9PFzorD+9kYQ/o7iqvxomjj8yMQG/2/LRv13pyj9x6J2/gGNAPvlQbL+KQcY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADk09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD3k09w+1XzaOzpVED8rDY09JxKAO0SWeD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]\n [0.4313041 0.00666771 0.56380045]]", "desired_goal": "[[ 0.03091832 1.350841 1.0356976 ]\n [-1.3337597 1.1105378 -0.5046569 ]\n [-1.6402239 1.5852467 -1.233656 ]\n [ 0.18787956 -0.92311054 1.5488751 ]]", "observation": "[[0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]\n [0.4313041 0.00666771 0.56380045 0.06887277 0.00390841 0.06069018]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzs2xvTfQ/b37eoQ+ayTCvXnENr2Jka09G0GYvX+hvr0RewE+bQYQPm1w3j000TM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08681832 -0.12393229 0.25875077]\n [-0.09479602 -0.04462096 0.08475024]\n [-0.07434293 -0.09308147 0.12644602]\n [ 0.14064951 0.10861287 0.17560273]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIR450BkZe4r+UhpRSlIwBbJRLMowBdJRHQLUX681n/T91fZQoaAZoCWgPQwhgI0kQroDgv5SGlFKUaBVLMmgWR0C1F8QmZ3LWdX2UKGgGaAloD0MIYTYBhuXP37+UhpRSlGgVSzJoFkdAtRem/TLGJnV9lChoBmgJaA9DCA3eV+VCZea/lIaUUpRoFUsyaBZHQLUXhv4/NaB1fZQoaAZoCWgPQwgaogp/hrfhv5SGlFKUaBVLMmgWR0C1GIVkUbkwdX2UKGgGaAloD0MIjspN1NLc7L+UhpRSlGgVSzJoFkdAtRheJTER8XV9lChoBmgJaA9DCMQ/bOnR1Oa/lIaUUpRoFUsyaBZHQLUYQSamXPZ1fZQoaAZoCWgPQwiMZfol4i3mv5SGlFKUaBVLMmgWR0C1GCE9dNWVdX2UKGgGaAloD0MICqGDLuHQ7b+UhpRSlGgVSzJoFkdAtRkIMoc7yXV9lChoBmgJaA9DCLqilBCsKuG/lIaUUpRoFUsyaBZHQLUY4I+nqFB1fZQoaAZoCWgPQwhaETXR56Phv5SGlFKUaBVLMmgWR0C1GMONtIkJdX2UKGgGaAloD0MIW18ktOVc37+UhpRSlGgVSzJoFkdAtRijnwG4Z3V9lChoBmgJaA9DCPrsgOuKGdi/lIaUUpRoFUsyaBZHQLUZjVvMr3F1fZQoaAZoCWgPQwiTpkHRPADhv5SGlFKUaBVLMmgWR0C1GWW912aEdX2UKGgGaAloD0MI4PQu3o/b57+UhpRSlGgVSzJoFkdAtRlIk9lmOHV9lChoBmgJaA9DCHMSSl8IOeK/lIaUUpRoFUsyaBZHQLUZKJ/G2kV1fZQoaAZoCWgPQwiHTWTmAhflv5SGlFKUaBVLMmgWR0C1GgyGWUr1dX2UKGgGaAloD0MIiA/s+C+Q6r+UhpRSlGgVSzJoFkdAtRnk5ggHNXV9lChoBmgJaA9DCBXJVwIpsb+/lIaUUpRoFUsyaBZHQLUZx8JD3M91fZQoaAZoCWgPQwiNJhdjYJ3hv5SGlFKUaBVLMmgWR0C1GafRVp9JdX2UKGgGaAloD0MIL6UuGcdI0b+UhpRSlGgVSzJoFkdAtRqNsKsuF3V9lChoBmgJaA9DCL2mBwWlaMu/lIaUUpRoFUsyaBZHQLUaZhAGB4F1fZQoaAZoCWgPQwhDyk+qfTrYv5SGlFKUaBVLMmgWR0C1GkjrNW2gdX2UKGgGaAloD0MIPzkKEAUzyL+UhpRSlGgVSzJoFkdAtRoo5U96knV9lChoBmgJaA9DCPVMLzGW6dK/lIaUUpRoFUsyaBZHQLUbDpwjt5V1fZQoaAZoCWgPQwgNAFXcuMXkv5SGlFKUaBVLMmgWR0C1GucG1QZXdX2UKGgGaAloD0MIoFG69C9J5b+UhpRSlGgVSzJoFkdAtRrJ6+nIhnV9lChoBmgJaA9DCHRhpBe1++e/lIaUUpRoFUsyaBZHQLUaqfHPu5V1fZQoaAZoCWgPQwiVZvM4DGbmv5SGlFKUaBVLMmgWR0C1G5GEwnIAdX2UKGgGaAloD0MIc9u+R/311r+UhpRSlGgVSzJoFkdAtRtp3t8eCHV9lChoBmgJaA9DCKjF4GHaN9i/lIaUUpRoFUsyaBZHQLUbTQ6IWP91fZQoaAZoCWgPQwjXoC+9/bnbv5SGlFKUaBVLMmgWR0C1Gy0XpGF0dX2UKGgGaAloD0MIuHNhpBc147+UhpRSlGgVSzJoFkdAtRwLphWo33V9lChoBmgJaA9DCGh4swbvq8q/lIaUUpRoFUsyaBZHQLUb4/9YOlR1fZQoaAZoCWgPQwg4ukp319nYv5SGlFKUaBVLMmgWR0C1G8bTDwYtdX2UKGgGaAloD0MIFjPC24OQ77+UhpRSlGgVSzJoFkdAtRum1kUbk3V9lChoBmgJaA9DCBO2n4zx4eS/lIaUUpRoFUsyaBZHQLUcjyZrpJR1fZQoaAZoCWgPQwgaNsr6zcTTv5SGlFKUaBVLMmgWR0C1HGeJtSAIdX2UKGgGaAloD0MIttsuNNdp4L+UhpRSlGgVSzJoFkdAtRxKfPHDJnV9lChoBmgJaA9DCCKmRBK9DOS/lIaUUpRoFUsyaBZHQLUcKpSaVlh1fZQoaAZoCWgPQwheSIeHMH7nv5SGlFKUaBVLMmgWR0C1HQ/VNHpbdX2UKGgGaAloD0MIW2H6XkNw2L+UhpRSlGgVSzJoFkdAtRzoL6UJOXV9lChoBmgJaA9DCEN1c/G3Pd2/lIaUUpRoFUsyaBZHQLUcyxagVXV1fZQoaAZoCWgPQwgi41Eq4QnBv5SGlFKUaBVLMmgWR0C1HKsoYvWZdX2UKGgGaAloD0MIrqBpiZVR4r+UhpRSlGgVSzJoFkdAtR2WETQE6nV9lChoBmgJaA9DCLwhjQqcbOG/lIaUUpRoFUsyaBZHQLUdbnEETxp1fZQoaAZoCWgPQwjVB5J3DmXKv5SGlFKUaBVLMmgWR0C1HVFdszl+dX2UKGgGaAloD0MI9u0kIvyL3L+UhpRSlGgVSzJoFkdAtR0xb8m8d3V9lChoBmgJaA9DCAt/hjdrcOW/lIaUUpRoFUsyaBZHQLUePXYUWVN1fZQoaAZoCWgPQwjF4jeFlQrZv5SGlFKUaBVLMmgWR0C1HhXtfG+9dX2UKGgGaAloD0MIehubHam+3r+UhpRSlGgVSzJoFkdAtR3477sOXnV9lChoBmgJaA9DCNrJ4Ch59e+/lIaUUpRoFUsyaBZHQLUd2ZJTVDt1fZQoaAZoCWgPQwgmcVZETXTvv5SGlFKUaBVLMmgWR0C1HrrlJYkndX2UKGgGaAloD0MIzhq8r8pF8r+UhpRSlGgVSzJoFkdAtR6TR+jM3nV9lChoBmgJaA9DCLG/7J48LNK/lIaUUpRoFUsyaBZHQLUedis4ku91fZQoaAZoCWgPQwggQlw5e2fev5SGlFKUaBVLMmgWR0C1HlYsiB5HdX2UKGgGaAloD0MIoIhFDDuM2r+UhpRSlGgVSzJoFkdAtR85C0F8onV9lChoBmgJaA9DCLvSMlLvqee/lIaUUpRoFUsyaBZHQLUfEWn0kGB1fZQoaAZoCWgPQwiGAyFZwITlv5SGlFKUaBVLMmgWR0C1HvRaLXMAdX2UKGgGaAloD0MIRzzZzYx+3r+UhpRSlGgVSzJoFkdAtR7UXBP9DXV9lChoBmgJaA9DCAH5Eio4POq/lIaUUpRoFUsyaBZHQLUfvlNlAeJ1fZQoaAZoCWgPQwj1hCUeUDbnv5SGlFKUaBVLMmgWR0C1H5a33HrAdX2UKGgGaAloD0MIoBaDh2lf7r+UhpRSlGgVSzJoFkdAtR95rP+n63V9lChoBmgJaA9DCGheDrvvGNW/lIaUUpRoFUsyaBZHQLUfWbp/wy91fZQoaAZoCWgPQwicbtkh/mHrv5SGlFKUaBVLMmgWR0C1IEKW5YozdX2UKGgGaAloD0MIPNwODYvR6L+UhpRSlGgVSzJoFkdAtSAa2SdOI3V9lChoBmgJaA9DCCKMn8a9+ey/lIaUUpRoFUsyaBZHQLUf/cjZ+QV1fZQoaAZoCWgPQwjqJFtdTgnbv5SGlFKUaBVLMmgWR0C1H93eenQ6dX2UKGgGaAloD0MIMVwdAHFX0L+UhpRSlGgVSzJoFkdAtSDMMhHLBHV9lChoBmgJaA9DCNI1k2+2OfK/lIaUUpRoFUsyaBZHQLUgpJnQID51fZQoaAZoCWgPQwggeedQhqrev5SGlFKUaBVLMmgWR0C1IId6HCXQdX2UKGgGaAloD0MIJemayTdb8L+UhpRSlGgVSzJoFkdAtSBnjKgZj3V9lChoBmgJaA9DCNIb7iO3puW/lIaUUpRoFUsyaBZHQLUhVwqAjIJ1fZQoaAZoCWgPQwhgH5268lnsv5SGlFKUaBVLMmgWR0C1IS970Fr3dX2UKGgGaAloD0MI51JcVfZd67+UhpRSlGgVSzJoFkdAtSESinHeanV9lChoBmgJaA9DCIeKcf4mFOa/lIaUUpRoFUsyaBZHQLUg8pTMqz91fZQoaAZoCWgPQwhu36P+eoXlv5SGlFKUaBVLMmgWR0C1IdoScslLdX2UKGgGaAloD0MIOzlDcceb47+UhpRSlGgVSzJoFkdAtSGycqe9SXV9lChoBmgJaA9DCNyg9ls7UeW/lIaUUpRoFUsyaBZHQLUhlXAuZkV1fZQoaAZoCWgPQwj8NsR4zavdv5SGlFKUaBVLMmgWR0C1IXVkhA4XdX2UKGgGaAloD0MIz/boDfeR8L+UhpRSlGgVSzJoFkdAtSJjuG9HtnV9lChoBmgJaA9DCGFtjJ3wkuy/lIaUUpRoFUsyaBZHQLUiPB4Uvf11fZQoaAZoCWgPQwgbSBebVkryv5SGlFKUaBVLMmgWR0C1Ih8fms/6dX2UKGgGaAloD0MIr0Ffevvz6L+UhpRSlGgVSzJoFkdAtSH/QID5kHV9lChoBmgJaA9DCOWAXU2e8vC/lIaUUpRoFUsyaBZHQLUi6vECNjt1fZQoaAZoCWgPQwj356Ih49Hiv5SGlFKUaBVLMmgWR0C1IsNQsPJ8dX2UKGgGaAloD0MIFTyFXKln57+UhpRSlGgVSzJoFkdAtSKmPxQSBnV9lChoBmgJaA9DCHU8ZqAy/uC/lIaUUpRoFUsyaBZHQLUihlRP4211fZQoaAZoCWgPQwjDD86njlXQv5SGlFKUaBVLMmgWR0C1I36qbSZ0dX2UKGgGaAloD0MIdJZZhGIr27+UhpRSlGgVSzJoFkdAtSNW76Hj63V9lChoBmgJaA9DCINqgxPRL+q/lIaUUpRoFUsyaBZHQLUjOeBg/kh1fZQoaAZoCWgPQwg7pu7KLpjrv5SGlFKUaBVLMmgWR0C1Ixo95hScdX2UKGgGaAloD0MImdh8XBvq8L+UhpRSlGgVSzJoFkdAtSP+14Pf9HV9lChoBmgJaA9DCBMn9zsUxfK/lIaUUpRoFUsyaBZHQLUj1zcRDkV1fZQoaAZoCWgPQwgKZkzBGufuv5SGlFKUaBVLMmgWR0C1I7n93r2QdX2UKGgGaAloD0MI4ba28LxU6b+UhpRSlGgVSzJoFkdAtSOaBmPHUHV9lChoBmgJaA9DCGvWGd8Xl9q/lIaUUpRoFUsyaBZHQLUkhMWGh251fZQoaAZoCWgPQwhG0JhJ1AvXv5SGlFKUaBVLMmgWR0C1JF0wSJ0odX2UKGgGaAloD0MIqnzPSIRG5b+UhpRSlGgVSzJoFkdAtSRAKE3843V9lChoBmgJaA9DCKon84++CfG/lIaUUpRoFUsyaBZHQLUkICLdepp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.566826065839268, "std_reward": 0.958876717212325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:57:18.607616"}
 
1
+ {"mean_reward": -0.7956482963170857, "std_reward": 0.16488974620928654, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T07:49:37.524490"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee270b8c4fa8a0f3e39d7e3978e5d2d62f6d7f19dd2776353f049d83c19c4457
3
  size 3212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3641da0065a4f6561921d967476e197e00a2710fde6f1e09f35e1199ee89739
3
  size 3212