sd99 commited on
Commit
f1d0d09
1 Parent(s): ad743f1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.57 +/- 0.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6039f6f0d976932a1458cbeac4e243f8d6d58e1adcd5deb57fd4e0f0fee6830
3
+ size 107987
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f215df643a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f215df5cb70>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674054816011286371,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbmgkv2xvgL9sw2w/vQ5lP6HnsT6fpMG+dFgJP334Eb8/uYS/9OADvyqQW796GKI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]]",
60
+ "desired_goal": "[[-0.6422185 -1.0034003 0.9248569 ]\n [ 0.89475614 0.3474703 -0.37820908]\n [ 0.53650594 -0.5701979 -1.0369033 ]\n [-0.51515126 -0.8576685 1.266372 ]]",
61
+ "observation": "[[0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSXovV8tz7yesow+9Xw4vbq5uD0P4q88BDsyvQRmK7vrtIw+8i4SPhjGPT0chP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.11335219 -0.02529019 0.27480024]\n [-0.04504104 0.090198 0.0214701 ]\n [-0.04351331 -0.00261533 0.2748178 ]\n [ 0.1427572 0.0463315 0.12427542]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93Lf8b+UhpRSlIwBbJRLMowBdJRHQKRfGAe7tiR1fZQoaAZoCWgPQwgdrtUe9mILwJSGlFKUaBVLMmgWR0CkXtwBHTZydX2UKGgGaAloD0MIsFWCxeEM/7+UhpRSlGgVSzJoFkdApF6gK2KEWnV9lChoBmgJaA9DCPwdigJ9Ivm/lIaUUpRoFUsyaBZHQKReYtPpIMB1fZQoaAZoCWgPQwhN1qiHaBQNwJSGlFKUaBVLMmgWR0CkYDVktmL+dX2UKGgGaAloD0MIhdBBl3Do9b+UhpRSlGgVSzJoFkdApF/46ltTDXV9lChoBmgJaA9DCGLX9nZLsvq/lIaUUpRoFUsyaBZHQKRfvOBUaQ51fZQoaAZoCWgPQwg9uhEWFfEFwJSGlFKUaBVLMmgWR0CkX39HlOoHdX2UKGgGaAloD0MIr7Mh/8xAA8CUhpRSlGgVSzJoFkdApGEo2GZeA3V9lChoBmgJaA9DCPTEc7aAsADAlIaUUpRoFUsyaBZHQKRg7B5X2dx1fZQoaAZoCWgPQwjsbTMV4tH5v5SGlFKUaBVLMmgWR0CkYLARChN/dX2UKGgGaAloD0MIb9QK0/f6AMCUhpRSlGgVSzJoFkdApGByWLP2PHV9lChoBmgJaA9DCKlOB7KeGgrAlIaUUpRoFUsyaBZHQKRiGUUwi7l1fZQoaAZoCWgPQwiFsBpLWNv/v5SGlFKUaBVLMmgWR0CkYdysCDEndX2UKGgGaAloD0MIQQ3fwrpx/7+UhpRSlGgVSzJoFkdApGGgwoLG73V9lChoBmgJaA9DCEWcTrLVpQXAlIaUUpRoFUsyaBZHQKRhY1gH/tJ1fZQoaAZoCWgPQwjj4xOy87YIwJSGlFKUaBVLMmgWR0CkYxSpJf6XdX2UKGgGaAloD0MIbVm+LsO/+L+UhpRSlGgVSzJoFkdApGLYKD0163V9lChoBmgJaA9DCKqezD/6xg3AlIaUUpRoFUsyaBZHQKRinGyX2M91fZQoaAZoCWgPQwjHDipxHQMBwJSGlFKUaBVLMmgWR0CkYl6xxDLKdX2UKGgGaAloD0MITn6LTpaa87+UhpRSlGgVSzJoFkdApGQOilBQenV9lChoBmgJaA9DCE/nilJCMPu/lIaUUpRoFUsyaBZHQKRj0eBg/kh1fZQoaAZoCWgPQwiFtMagEwL5v5SGlFKUaBVLMmgWR0CkY5YV6/qPdX2UKGgGaAloD0MIeawZGeRu9b+UhpRSlGgVSzJoFkdApGNYtL+PzXV9lChoBmgJaA9DCKTGhJhLav2/lIaUUpRoFUsyaBZHQKRk9bGm1pl1fZQoaAZoCWgPQwh4fHvXoE8GwJSGlFKUaBVLMmgWR0CkZLk+HJtBdX2UKGgGaAloD0MIY/Aw7Zt7AMCUhpRSlGgVSzJoFkdApGR9opQUH3V9lChoBmgJaA9DCMMOY9LfS/2/lIaUUpRoFUsyaBZHQKRkQAAAAAB1fZQoaAZoCWgPQwjs3LQZpwEAwJSGlFKUaBVLMmgWR0CkZewZn+Q2dX2UKGgGaAloD0MISN+kaVC09b+UhpRSlGgVSzJoFkdApGWvbdrO7nV9lChoBmgJaA9DCOIEptO6jQDAlIaUUpRoFUsyaBZHQKRlc4lyBCl1fZQoaAZoCWgPQwjueJPfonMGwJSGlFKUaBVLMmgWR0CkZTXRoh6jdX2UKGgGaAloD0MI3bbvUX/dA8CUhpRSlGgVSzJoFkdApGbaWHDaXnV9lChoBmgJaA9DCGACt+7mKQrAlIaUUpRoFUsyaBZHQKRmnb+Lm6p1fZQoaAZoCWgPQwgC9WbUfLUCwJSGlFKUaBVLMmgWR0CkZmGwaBI4dX2UKGgGaAloD0MIuRyvQPRkDcCUhpRSlGgVSzJoFkdApGYkFr2xp3V9lChoBmgJaA9DCJtwr8xbdfy/lIaUUpRoFUsyaBZHQKRnzK02LpB1fZQoaAZoCWgPQwjVsyCU99EDwJSGlFKUaBVLMmgWR0CkZ5AQ6IWQdX2UKGgGaAloD0MI/KvHfau19b+UhpRSlGgVSzJoFkdApGdUBGQSz3V9lChoBmgJaA9DCCuk/KTaZ/e/lIaUUpRoFUsyaBZHQKRnFmpVCHB1fZQoaAZoCWgPQwgIclDCTNsQwJSGlFKUaBVLMmgWR0CkaMOa4MF2dX2UKGgGaAloD0MIdT48S5CxCsCUhpRSlGgVSzJoFkdApGiG6VdHD3V9lChoBmgJaA9DCJ3y6EZY1PW/lIaUUpRoFUsyaBZHQKRoSuCf6Gh1fZQoaAZoCWgPQwgT1sbYCS8DwJSGlFKUaBVLMmgWR0CkaA0x/NJOdX2UKGgGaAloD0MI7Z+nAYMk97+UhpRSlGgVSzJoFkdApGmz4N7SiXV9lChoBmgJaA9DCNnts8pMafq/lIaUUpRoFUsyaBZHQKRpd0nPVut1fZQoaAZoCWgPQwicFye+2hH1v5SGlFKUaBVLMmgWR0CkaTs2WIGhdX2UKGgGaAloD0MIoUliSbk7CsCUhpRSlGgVSzJoFkdApGj9fw7T2HV9lChoBmgJaA9DCGA97lutU/m/lIaUUpRoFUsyaBZHQKRqqzguRLd1fZQoaAZoCWgPQwgGZK93f7z+v5SGlFKUaBVLMmgWR0Ckam500WM1dX2UKGgGaAloD0MIQL0ZNV+lBMCUhpRSlGgVSzJoFkdApGoytHQQc3V9lChoBmgJaA9DCETBjClYowHAlIaUUpRoFUsyaBZHQKRp9UExIrh1fZQoaAZoCWgPQwjWGd8Xl4oKwJSGlFKUaBVLMmgWR0Cka55jx0+1dX2UKGgGaAloD0MIBDv+CwTB+L+UhpRSlGgVSzJoFkdApGthvUBnz3V9lChoBmgJaA9DCFVQUfUrnfe/lIaUUpRoFUsyaBZHQKRrJcVQAMl1fZQoaAZoCWgPQwhEpKZdTDPyv5SGlFKUaBVLMmgWR0CkaugpjMFEdX2UKGgGaAloD0MI7Zv7q8ddDsCUhpRSlGgVSzJoFkdApGysn7YTTXV9lChoBmgJaA9DCC3RWWYRKgPAlIaUUpRoFUsyaBZHQKRsb/+85CF1fZQoaAZoCWgPQwhTXcDLDJv8v5SGlFKUaBVLMmgWR0CkbDQzLwF1dX2UKGgGaAloD0MISG3i5H7H+r+UhpRSlGgVSzJoFkdApGv2xOclPnV9lChoBmgJaA9DCGco7niT3wbAlIaUUpRoFUsyaBZHQKRtpOWSlnB1fZQoaAZoCWgPQwhCCMiXUEH8v5SGlFKUaBVLMmgWR0CkbWiADq4ZdX2UKGgGaAloD0MIvYxiuaX1BMCUhpRSlGgVSzJoFkdApG0sgZCOWHV9lChoBmgJaA9DCL2mBwWlqPy/lIaUUpRoFUsyaBZHQKRs7t52Qnx1fZQoaAZoCWgPQwioGr0aoLTzv5SGlFKUaBVLMmgWR0CkbqOLiuMddX2UKGgGaAloD0MIhlj9EYaB+7+UhpRSlGgVSzJoFkdApG5m1fE4vXV9lChoBmgJaA9DCP0WnSy1nv6/lIaUUpRoFUsyaBZHQKRuKtsenyd1fZQoaAZoCWgPQwhGelG7XwX5v5SGlFKUaBVLMmgWR0Ckbe0m2LHddX2UKGgGaAloD0MI5WA2AYbl+L+UhpRSlGgVSzJoFkdApG+b7O3UhHV9lChoBmgJaA9DCDViZp/H6AXAlIaUUpRoFUsyaBZHQKRvX3ai9Ix1fZQoaAZoCWgPQwhmhSLdz+kCwJSGlFKUaBVLMmgWR0CkbyOGbkOqdX2UKGgGaAloD0MIcJUnEHYK87+UhpRSlGgVSzJoFkdApG7l6iTMaHV9lChoBmgJaA9DCIwVNZiGoQTAlIaUUpRoFUsyaBZHQKRwsasIVud1fZQoaAZoCWgPQwjik04kmOoAwJSGlFKUaBVLMmgWR0CkcHUD+zdDdX2UKGgGaAloD0MIXRd+cD6VA8CUhpRSlGgVSzJoFkdApHA5E6T4cnV9lChoBmgJaA9DCK6cvTPaSgPAlIaUUpRoFUsyaBZHQKRv+4y44Id1fZQoaAZoCWgPQwgHfentz4X/v5SGlFKUaBVLMmgWR0CkcaM7U5MldX2UKGgGaAloD0MI0lRP5h899b+UhpRSlGgVSzJoFkdApHFmtp22X3V9lChoBmgJaA9DCLnBUIcV7v+/lIaUUpRoFUsyaBZHQKRxKs/Y8Md1fZQoaAZoCWgPQwg18KMa9rv9v5SGlFKUaBVLMmgWR0CkcO0lzEJjdX2UKGgGaAloD0MIrROX4xUIB8CUhpRSlGgVSzJoFkdApHKeNcW0q3V9lChoBmgJaA9DCHLe/8cJU/q/lIaUUpRoFUsyaBZHQKRyYYm9g4R1fZQoaAZoCWgPQwhXJZF9kOX8v5SGlFKUaBVLMmgWR0CkciW2PT5PdX2UKGgGaAloD0MIRuo9ldNe/L+UhpRSlGgVSzJoFkdApHHn+IdlunV9lChoBmgJaA9DCJiHTPkQFPu/lIaUUpRoFUsyaBZHQKRzjw2ETQF1fZQoaAZoCWgPQwjkvP+PE6buv5SGlFKUaBVLMmgWR0Ckc1J0wJw9dX2UKGgGaAloD0MIlbiOccWFAsCUhpRSlGgVSzJoFkdApHMWdK/VRXV9lChoBmgJaA9DCK5hhsYTAQXAlIaUUpRoFUsyaBZHQKRy2OjIq9Z1fZQoaAZoCWgPQwiZZrrXSR0MwJSGlFKUaBVLMmgWR0CkdIZOzposdX2UKGgGaAloD0MIhlRRvMo6A8CUhpRSlGgVSzJoFkdApHRJwyZa3nV9lChoBmgJaA9DCNl3RfC/VQfAlIaUUpRoFUsyaBZHQKR0DacI7eV1fZQoaAZoCWgPQwjY9KCgFK39v5SGlFKUaBVLMmgWR0Ckc8/yXlbNdX2UKGgGaAloD0MIZw5JLZRM9b+UhpRSlGgVSzJoFkdApHVtuR9w33V9lChoBmgJaA9DCPYjRWRYhfe/lIaUUpRoFUsyaBZHQKR1MPf8/EB1fZQoaAZoCWgPQwhVLlT+tfz/v5SGlFKUaBVLMmgWR0CkdPTc6/7BdX2UKGgGaAloD0MIHxDoTNo0BcCUhpRSlGgVSzJoFkdApHS3SMLncXV9lChoBmgJaA9DCNnts8pM6fa/lIaUUpRoFUsyaBZHQKR2W48U21l1fZQoaAZoCWgPQwho7Es2HswAwJSGlFKUaBVLMmgWR0Ckdh9K/VRUdX2UKGgGaAloD0MI8u7IWG2+BcCUhpRSlGgVSzJoFkdApHXjaM72c3V9lChoBmgJaA9DCMCWV663jfW/lIaUUpRoFUsyaBZHQKR1pcUM5Ot1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:560c205a086de99575e37f57f3f42633bba10399c92bbecfff654111556ecdf9
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5de9958544632efa5b808b6646e7d4b27952ded45e3458ac1fad3120fd463658
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f215df643a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f215df5cb70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674054816011286371, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/ik+UPuRJyDs/MxE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbmgkv2xvgL9sw2w/vQ5lP6HnsT6fpMG+dFgJP334Eb8/uYS/9OADvyqQW796GKI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuKT5Q+5EnIOz8zET+qQ9k7P3UOO6pcszuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]\n [0.28966933 0.00611232 0.5671882 ]]", "desired_goal": "[[-0.6422185 -1.0034003 0.9248569 ]\n [ 0.89475614 0.3474703 -0.37820908]\n [ 0.53650594 -0.5701979 -1.0369033 ]\n [-0.51515126 -0.8576685 1.266372 ]]", "observation": "[[0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]\n [0.28966933 0.00611232 0.5671882 0.00663038 0.00217374 0.00547369]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSXovV8tz7yesow+9Xw4vbq5uD0P4q88BDsyvQRmK7vrtIw+8i4SPhjGPT0chP49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11335219 -0.02529019 0.27480024]\n [-0.04504104 0.090198 0.0214701 ]\n [-0.04351331 -0.00261533 0.2748178 ]\n [ 0.1427572 0.0463315 0.12427542]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93Lf8b+UhpRSlIwBbJRLMowBdJRHQKRfGAe7tiR1fZQoaAZoCWgPQwgdrtUe9mILwJSGlFKUaBVLMmgWR0CkXtwBHTZydX2UKGgGaAloD0MIsFWCxeEM/7+UhpRSlGgVSzJoFkdApF6gK2KEWnV9lChoBmgJaA9DCPwdigJ9Ivm/lIaUUpRoFUsyaBZHQKReYtPpIMB1fZQoaAZoCWgPQwhN1qiHaBQNwJSGlFKUaBVLMmgWR0CkYDVktmL+dX2UKGgGaAloD0MIhdBBl3Do9b+UhpRSlGgVSzJoFkdApF/46ltTDXV9lChoBmgJaA9DCGLX9nZLsvq/lIaUUpRoFUsyaBZHQKRfvOBUaQ51fZQoaAZoCWgPQwg9uhEWFfEFwJSGlFKUaBVLMmgWR0CkX39HlOoHdX2UKGgGaAloD0MIr7Mh/8xAA8CUhpRSlGgVSzJoFkdApGEo2GZeA3V9lChoBmgJaA9DCPTEc7aAsADAlIaUUpRoFUsyaBZHQKRg7B5X2dx1fZQoaAZoCWgPQwjsbTMV4tH5v5SGlFKUaBVLMmgWR0CkYLARChN/dX2UKGgGaAloD0MIb9QK0/f6AMCUhpRSlGgVSzJoFkdApGByWLP2PHV9lChoBmgJaA9DCKlOB7KeGgrAlIaUUpRoFUsyaBZHQKRiGUUwi7l1fZQoaAZoCWgPQwiFsBpLWNv/v5SGlFKUaBVLMmgWR0CkYdysCDEndX2UKGgGaAloD0MIQQ3fwrpx/7+UhpRSlGgVSzJoFkdApGGgwoLG73V9lChoBmgJaA9DCEWcTrLVpQXAlIaUUpRoFUsyaBZHQKRhY1gH/tJ1fZQoaAZoCWgPQwjj4xOy87YIwJSGlFKUaBVLMmgWR0CkYxSpJf6XdX2UKGgGaAloD0MIbVm+LsO/+L+UhpRSlGgVSzJoFkdApGLYKD0163V9lChoBmgJaA9DCKqezD/6xg3AlIaUUpRoFUsyaBZHQKRinGyX2M91fZQoaAZoCWgPQwjHDipxHQMBwJSGlFKUaBVLMmgWR0CkYl6xxDLKdX2UKGgGaAloD0MITn6LTpaa87+UhpRSlGgVSzJoFkdApGQOilBQenV9lChoBmgJaA9DCE/nilJCMPu/lIaUUpRoFUsyaBZHQKRj0eBg/kh1fZQoaAZoCWgPQwiFtMagEwL5v5SGlFKUaBVLMmgWR0CkY5YV6/qPdX2UKGgGaAloD0MIeawZGeRu9b+UhpRSlGgVSzJoFkdApGNYtL+PzXV9lChoBmgJaA9DCKTGhJhLav2/lIaUUpRoFUsyaBZHQKRk9bGm1pl1fZQoaAZoCWgPQwh4fHvXoE8GwJSGlFKUaBVLMmgWR0CkZLk+HJtBdX2UKGgGaAloD0MIY/Aw7Zt7AMCUhpRSlGgVSzJoFkdApGR9opQUH3V9lChoBmgJaA9DCMMOY9LfS/2/lIaUUpRoFUsyaBZHQKRkQAAAAAB1fZQoaAZoCWgPQwjs3LQZpwEAwJSGlFKUaBVLMmgWR0CkZewZn+Q2dX2UKGgGaAloD0MISN+kaVC09b+UhpRSlGgVSzJoFkdApGWvbdrO7nV9lChoBmgJaA9DCOIEptO6jQDAlIaUUpRoFUsyaBZHQKRlc4lyBCl1fZQoaAZoCWgPQwjueJPfonMGwJSGlFKUaBVLMmgWR0CkZTXRoh6jdX2UKGgGaAloD0MI3bbvUX/dA8CUhpRSlGgVSzJoFkdApGbaWHDaXnV9lChoBmgJaA9DCGACt+7mKQrAlIaUUpRoFUsyaBZHQKRmnb+Lm6p1fZQoaAZoCWgPQwgC9WbUfLUCwJSGlFKUaBVLMmgWR0CkZmGwaBI4dX2UKGgGaAloD0MIuRyvQPRkDcCUhpRSlGgVSzJoFkdApGYkFr2xp3V9lChoBmgJaA9DCJtwr8xbdfy/lIaUUpRoFUsyaBZHQKRnzK02LpB1fZQoaAZoCWgPQwjVsyCU99EDwJSGlFKUaBVLMmgWR0CkZ5AQ6IWQdX2UKGgGaAloD0MI/KvHfau19b+UhpRSlGgVSzJoFkdApGdUBGQSz3V9lChoBmgJaA9DCCuk/KTaZ/e/lIaUUpRoFUsyaBZHQKRnFmpVCHB1fZQoaAZoCWgPQwgIclDCTNsQwJSGlFKUaBVLMmgWR0CkaMOa4MF2dX2UKGgGaAloD0MIdT48S5CxCsCUhpRSlGgVSzJoFkdApGiG6VdHD3V9lChoBmgJaA9DCJ3y6EZY1PW/lIaUUpRoFUsyaBZHQKRoSuCf6Gh1fZQoaAZoCWgPQwgT1sbYCS8DwJSGlFKUaBVLMmgWR0CkaA0x/NJOdX2UKGgGaAloD0MI7Z+nAYMk97+UhpRSlGgVSzJoFkdApGmz4N7SiXV9lChoBmgJaA9DCNnts8pMafq/lIaUUpRoFUsyaBZHQKRpd0nPVut1fZQoaAZoCWgPQwicFye+2hH1v5SGlFKUaBVLMmgWR0CkaTs2WIGhdX2UKGgGaAloD0MIoUliSbk7CsCUhpRSlGgVSzJoFkdApGj9fw7T2HV9lChoBmgJaA9DCGA97lutU/m/lIaUUpRoFUsyaBZHQKRqqzguRLd1fZQoaAZoCWgPQwgGZK93f7z+v5SGlFKUaBVLMmgWR0Ckam500WM1dX2UKGgGaAloD0MIQL0ZNV+lBMCUhpRSlGgVSzJoFkdApGoytHQQc3V9lChoBmgJaA9DCETBjClYowHAlIaUUpRoFUsyaBZHQKRp9UExIrh1fZQoaAZoCWgPQwjWGd8Xl4oKwJSGlFKUaBVLMmgWR0Cka55jx0+1dX2UKGgGaAloD0MIBDv+CwTB+L+UhpRSlGgVSzJoFkdApGthvUBnz3V9lChoBmgJaA9DCFVQUfUrnfe/lIaUUpRoFUsyaBZHQKRrJcVQAMl1fZQoaAZoCWgPQwhEpKZdTDPyv5SGlFKUaBVLMmgWR0CkaugpjMFEdX2UKGgGaAloD0MI7Zv7q8ddDsCUhpRSlGgVSzJoFkdApGysn7YTTXV9lChoBmgJaA9DCC3RWWYRKgPAlIaUUpRoFUsyaBZHQKRsb/+85CF1fZQoaAZoCWgPQwhTXcDLDJv8v5SGlFKUaBVLMmgWR0CkbDQzLwF1dX2UKGgGaAloD0MISG3i5H7H+r+UhpRSlGgVSzJoFkdApGv2xOclPnV9lChoBmgJaA9DCGco7niT3wbAlIaUUpRoFUsyaBZHQKRtpOWSlnB1fZQoaAZoCWgPQwhCCMiXUEH8v5SGlFKUaBVLMmgWR0CkbWiADq4ZdX2UKGgGaAloD0MIvYxiuaX1BMCUhpRSlGgVSzJoFkdApG0sgZCOWHV9lChoBmgJaA9DCL2mBwWlqPy/lIaUUpRoFUsyaBZHQKRs7t52Qnx1fZQoaAZoCWgPQwioGr0aoLTzv5SGlFKUaBVLMmgWR0CkbqOLiuMddX2UKGgGaAloD0MIhlj9EYaB+7+UhpRSlGgVSzJoFkdApG5m1fE4vXV9lChoBmgJaA9DCP0WnSy1nv6/lIaUUpRoFUsyaBZHQKRuKtsenyd1fZQoaAZoCWgPQwhGelG7XwX5v5SGlFKUaBVLMmgWR0Ckbe0m2LHddX2UKGgGaAloD0MI5WA2AYbl+L+UhpRSlGgVSzJoFkdApG+b7O3UhHV9lChoBmgJaA9DCDViZp/H6AXAlIaUUpRoFUsyaBZHQKRvX3ai9Ix1fZQoaAZoCWgPQwhmhSLdz+kCwJSGlFKUaBVLMmgWR0CkbyOGbkOqdX2UKGgGaAloD0MIcJUnEHYK87+UhpRSlGgVSzJoFkdApG7l6iTMaHV9lChoBmgJaA9DCIwVNZiGoQTAlIaUUpRoFUsyaBZHQKRwsasIVud1fZQoaAZoCWgPQwjik04kmOoAwJSGlFKUaBVLMmgWR0CkcHUD+zdDdX2UKGgGaAloD0MIXRd+cD6VA8CUhpRSlGgVSzJoFkdApHA5E6T4cnV9lChoBmgJaA9DCK6cvTPaSgPAlIaUUpRoFUsyaBZHQKRv+4y44Id1fZQoaAZoCWgPQwgHfentz4X/v5SGlFKUaBVLMmgWR0CkcaM7U5MldX2UKGgGaAloD0MI0lRP5h899b+UhpRSlGgVSzJoFkdApHFmtp22X3V9lChoBmgJaA9DCLnBUIcV7v+/lIaUUpRoFUsyaBZHQKRxKs/Y8Md1fZQoaAZoCWgPQwg18KMa9rv9v5SGlFKUaBVLMmgWR0CkcO0lzEJjdX2UKGgGaAloD0MIrROX4xUIB8CUhpRSlGgVSzJoFkdApHKeNcW0q3V9lChoBmgJaA9DCHLe/8cJU/q/lIaUUpRoFUsyaBZHQKRyYYm9g4R1fZQoaAZoCWgPQwhXJZF9kOX8v5SGlFKUaBVLMmgWR0CkciW2PT5PdX2UKGgGaAloD0MIRuo9ldNe/L+UhpRSlGgVSzJoFkdApHHn+IdlunV9lChoBmgJaA9DCJiHTPkQFPu/lIaUUpRoFUsyaBZHQKRzjw2ETQF1fZQoaAZoCWgPQwjkvP+PE6buv5SGlFKUaBVLMmgWR0Ckc1J0wJw9dX2UKGgGaAloD0MIlbiOccWFAsCUhpRSlGgVSzJoFkdApHMWdK/VRXV9lChoBmgJaA9DCK5hhsYTAQXAlIaUUpRoFUsyaBZHQKRy2OjIq9Z1fZQoaAZoCWgPQwiZZrrXSR0MwJSGlFKUaBVLMmgWR0CkdIZOzposdX2UKGgGaAloD0MIhlRRvMo6A8CUhpRSlGgVSzJoFkdApHRJwyZa3nV9lChoBmgJaA9DCNl3RfC/VQfAlIaUUpRoFUsyaBZHQKR0DacI7eV1fZQoaAZoCWgPQwjY9KCgFK39v5SGlFKUaBVLMmgWR0Ckc8/yXlbNdX2UKGgGaAloD0MIZw5JLZRM9b+UhpRSlGgVSzJoFkdApHVtuR9w33V9lChoBmgJaA9DCPYjRWRYhfe/lIaUUpRoFUsyaBZHQKR1MPf8/EB1fZQoaAZoCWgPQwhVLlT+tfz/v5SGlFKUaBVLMmgWR0CkdPTc6/7BdX2UKGgGaAloD0MIHxDoTNo0BcCUhpRSlGgVSzJoFkdApHS3SMLncXV9lChoBmgJaA9DCNnts8pM6fa/lIaUUpRoFUsyaBZHQKR2W48U21l1fZQoaAZoCWgPQwho7Es2HswAwJSGlFKUaBVLMmgWR0Ckdh9K/VRUdX2UKGgGaAloD0MI8u7IWG2+BcCUhpRSlGgVSzJoFkdApHXjaM72c3V9lChoBmgJaA9DCMCWV663jfW/lIaUUpRoFUsyaBZHQKR1pcUM5Ot1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (757 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.566826065839268, "std_reward": 0.958876717212325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T15:57:18.607616"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee270b8c4fa8a0f3e39d7e3978e5d2d62f6d7f19dd2776353f049d83c19c4457
3
+ size 3212