|
--- |
|
license: cc-by-4.0 |
|
library_name: scvi-tools |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:SCANVI |
|
- scvi_version:0.20.3 |
|
- anndata_version:0.8.0 |
|
- modality:rna |
|
- tissue:lung |
|
- annotated:True |
|
--- |
|
|
|
# Description |
|
|
|
The single cell lung cancer atlas is a resource integrating more than 1.2 million cells from 309 patients across 29 datasets. |
|
|
|
# Model properties |
|
|
|
Many model properties are in the model tags. Some more are listed below. |
|
|
|
**model_init_params**: |
|
```json |
|
{ |
|
"n_hidden": 128, |
|
"n_latent": 10, |
|
"n_layers": 2, |
|
"dropout_rate": 0.2, |
|
"dispersion": "gene", |
|
"gene_likelihood": "zinb", |
|
"latent_distribution": "normal", |
|
"use_layer_norm": "both", |
|
"use_batch_norm": "none", |
|
"encode_covariates": true |
|
} |
|
``` |
|
|
|
**model_setup_anndata_args**: |
|
```json |
|
{ |
|
"labels_key": "cell_type", |
|
"unlabeled_category": "unknown", |
|
"layer": null, |
|
"batch_key": "sample", |
|
"size_factor_key": null, |
|
"categorical_covariate_keys": null, |
|
"continuous_covariate_keys": null |
|
} |
|
``` |
|
|
|
**model_summary_stats**: |
|
| Summary Stat Key | Value | |
|
|--------------------------|--------| |
|
| n_batch | 505 | |
|
| n_cells | 892296 | |
|
| n_extra_categorical_covs | 0 | |
|
| n_extra_continuous_covs | 0 | |
|
| n_labels | 45 | |
|
| n_latent_qzm | 10 | |
|
| n_latent_qzv | 10 | |
|
| n_vars | 6000 | |
|
|
|
**model_data_registry**: |
|
| Registry Key | scvi-tools Location | |
|
|-------------------|----------------------------------------| |
|
| X | adata.X | |
|
| batch | adata.obs['_scvi_batch'] | |
|
| labels | adata.obs['_scvi_labels'] | |
|
| latent_qzm | adata.obsm['_scanvi_latent_qzm'] | |
|
| latent_qzv | adata.obsm['_scanvi_latent_qzv'] | |
|
| minify_type | adata.uns['_scvi_adata_minify_type'] | |
|
| observed_lib_size | adata.obs['_scanvi_observed_lib_size'] | |
|
|
|
**model_parent_module**: scvi.model |
|
|
|
**data_is_minified**: True |
|
|
|
# Training data |
|
|
|
This is an optional link to where the training data is stored if it is too large |
|
to host on the huggingface Model hub. |
|
|
|
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make |
|
sure to provide this field if you want users to be able to access your training data. See the scvi-tools |
|
documentation for details. --> |
|
|
|
Training data url: https://zenodo.org/record/7227571/files/core_atlas_scanvi_model.tar.gz |
|
|
|
# Training code |
|
|
|
This is an optional link to the code used to train the model. |
|
|
|
Training code url: https://github.com/icbi-lab/luca |
|
|
|
# References |
|
|
|
High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. S Salcher, G Sturm, L Horvath, G Untergasser, C Kuempers, G Fotakis, E Panizzolo, A Martowicz, M Trebo, G Pall, G Gamerith, M Sykora, F Augustin, K Schmitz, F Finotello, D Rieder, S Perner, S Sopper, D Wolf, A Pircher, Z Trajanoski. Cancer Cell. 2022; 40 (12): 1503-1520.e8. https: //doi.org/10.1016/j.ccell.2022.10.008 |