LongT5-Base-NSPCC

This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7756
  • Rouge1: 0.5243
  • Rouge2: 0.242
  • Rougel: 0.3113
  • Rougelsum: 0.3122
  • Gen Len: 331.8511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
4.0417 0.9947 94 0.8455 0.4707 0.1986 0.2704 0.2718 303.4468
1.0117 2.0 189 0.8058 0.5178 0.239 0.3066 0.3077 326.3085
0.886 2.9947 283 0.7798 0.5085 0.2272 0.298 0.2989 348.7979
0.805 4.0 378 0.7725 0.5194 0.2386 0.309 0.31 331.3191
0.7724 4.9947 472 0.7749 0.5224 0.2423 0.3133 0.3147 333.6489
0.7514 5.9683 564 0.7756 0.5243 0.242 0.3113 0.3122 331.8511

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
113
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for scott156/LongT5-Base-NSPCC

Finetuned
(20)
this model