schnell's picture
update model card README.md
edf1fbc
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-UnidicBpe2
    results: []

bert-small-UnidicBpe2

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5693
  • Accuracy: 0.6686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0974 1.0 69473 1.9746 0.6071
1.9586 2.0 138946 1.8301 0.6284
1.889 3.0 208419 1.7627 0.6383
1.8496 4.0 277892 1.7236 0.6442
1.8188 5.0 347365 1.6924 0.6490
1.7983 6.0 416838 1.6650 0.6535
1.7788 7.0 486311 1.6484 0.6558
1.7623 8.0 555784 1.6328 0.6580
1.7497 9.0 625257 1.6182 0.6605
1.7321 10.0 694730 1.6064 0.6623
1.7225 11.0 764203 1.5908 0.6647
1.707 12.0 833676 1.5859 0.6660
1.7049 13.0 903149 1.5752 0.6672
1.6982 14.0 972622 1.5693 0.6686

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.9.0
  • Tokenizers 0.12.1