schnell's picture
update model card README.md
16d516e
|
raw
history blame
2.27 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-IpadicUnigram2
    results: []

bert-small-IpadicUnigram2

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2725
  • Accuracy: 0.7233

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7647 1.0 69473 1.6172 0.6646
1.6381 2.0 138946 1.4902 0.6853
1.5804 3.0 208419 1.4355 0.6951
1.5448 4.0 277892 1.4004 0.7008
1.52 5.0 347365 1.3740 0.7058
1.4963 6.0 416838 1.3564 0.7089
1.485 7.0 486311 1.3398 0.7113
1.4665 8.0 555784 1.3252 0.7138
1.454 9.0 625257 1.3145 0.7158
1.4447 10.0 694730 1.3027 0.7182
1.4341 11.0 764203 1.2949 0.7192
1.4266 12.0 833676 1.2861 0.7205
1.4191 13.0 903149 1.2764 0.7224
1.4118 14.0 972622 1.2725 0.7233

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.9.0
  • Tokenizers 0.12.1