sbottazziunsam's picture
update model card README.md
7e32391
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - f1
model-index:
  - name: 10-classifier-finetuned-padchest
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.9061888902800384

10-classifier-finetuned-padchest

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2197
  • F1: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss F1
0.7175 1.0 18 0.6978 0.5508
0.6996 2.0 36 0.6699 0.7605
0.659 3.0 54 0.6291 0.8044
0.5937 4.0 72 0.5778 0.7920
0.5124 5.0 90 0.5113 0.7934
0.4668 6.0 108 0.4066 0.7934
0.4079 7.0 126 0.4105 0.7934
0.363 8.0 144 0.3652 0.7934
0.337 9.0 162 0.3410 0.7934
0.3172 10.0 180 0.3272 0.7934
0.3082 11.0 198 0.2930 0.7934
0.2967 12.0 216 0.2814 0.7934
0.2889 13.0 234 0.2665 0.7934
0.2636 14.0 252 0.2846 0.7934
0.2694 15.0 270 0.2610 0.7934
0.2663 16.0 288 0.2828 0.7934
0.2573 17.0 306 0.2615 0.7934
0.2558 18.0 324 0.2606 0.7934
0.2492 19.0 342 0.2532 0.7934
0.2513 20.0 360 0.2559 0.7934
0.2429 21.0 378 0.2497 0.7934
0.2361 22.0 396 0.2412 0.7934
0.2423 23.0 414 0.2494 0.8235
0.2479 24.0 432 0.2446 0.8290
0.2237 25.0 450 0.2425 0.8428
0.2282 26.0 468 0.2446 0.8573
0.2343 27.0 486 0.2348 0.8344
0.2169 28.0 504 0.2358 0.8547
0.2169 29.0 522 0.2400 0.8622
0.2341 30.0 540 0.2342 0.8579
0.2241 31.0 558 0.2266 0.8511
0.2132 32.0 576 0.2250 0.8662
0.2155 33.0 594 0.2222 0.8485
0.2014 34.0 612 0.2279 0.8659
0.2033 35.0 630 0.2296 0.8886
0.1993 36.0 648 0.2252 0.8909
0.228 37.0 666 0.2226 0.8742
0.2292 38.0 684 0.2274 0.9030
0.202 39.0 702 0.2307 0.8997
0.2133 40.0 720 0.2244 0.8977
0.214 41.0 738 0.2281 0.9053
0.2203 42.0 756 0.2251 0.9020
0.2071 43.0 774 0.2214 0.8848
0.2125 44.0 792 0.2196 0.8932
0.2137 45.0 810 0.2187 0.8811
0.2073 46.0 828 0.2183 0.9020
0.2119 47.0 846 0.2185 0.9109
0.2018 48.0 864 0.2199 0.8943
0.1971 49.0 882 0.2211 0.9053
0.2079 50.0 900 0.2197 0.9062

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.13.3