Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +8 -8
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 262.70 +/- 22.66
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2c948cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2c948cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2c948cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2c948ce50>", "_build": "<function ActorCriticPolicy._build at 0x7fe2c948cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2c948cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2c9491040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2c94910d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2c9491160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2c94911f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2c9491280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2c948a450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672049287207080409, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOqAD7p8Lo+lZwuvnHFo76zXyI9PrjfvAAAAAAAAAAAIGoPPmbliz/V+fs+rxvjvs74ST5I06U+AAAAAAAAAAAAnkW8gT2YvK0UEb3ZPwE6+0kEPmZrzboAAIA/AACAPxozHb1edrY/W2vZvgQzDb0aqCU9pxODPQAAAAAAAAAATX0/vXv2nbrudh41RL0iLxInQbo6elO0AACAPwAAgD+NO18+qfKqP385ID+trOq+suuQPo2zkj4AAAAAAAAAAJrtDT22ykE9NgdBvsFjZ75K/AQ9dCCzPQAAAAAAAAAAmuHYPCzVvD+eWsA+b2KoPhAv6rxbh1+9AAAAAAAAAACau1M9QLurP3E4Nj9TBQW/XXCdvI5qgj0AAAAAAAAAAJrm+LwtlKY/Tmd6vn155r7tLrW8yAivvQAAAAAAAAAAszvDPTikYD+W54M9Lk2tvt3PnT31Cne8AAAAAAAAAAANloO9tmokvDBBgbupU7E8WzyhPdMGkb0AAIA/AACAP2Yr6zxmNUg/UmAqPWRXm77FG0w8o7f3PQAAAAAAAAAAADDhulIOoruEayU7/tyXPBQW3Txk6YC9AACAPwAAgD8AZqC9XLN5uoaqGrkPew+08p1aOg3LNDgAAIA/AACAP5p5lDpcS0i6jiKXPTqwTb5CbSM9Wy4qPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9inHZDEqcECUhpRSlIwBbJRNJAGMAXSUR0CSWXJ6Y3NtdX2UKGgGaAloD0MIUWnEzP4fckCUhpRSlGgVTQ8BaBZHQJJZpfrrxAl1fZQoaAZoCWgPQwhseHqlrAdvQJSGlFKUaBVNEgFoFkdAklpDNUwSJ3V9lChoBmgJaA9DCMx+3enOm05AlIaUUpRoFUvSaBZHQJJaix4Y77t1fZQoaAZoCWgPQwgrUIvBAzZxQJSGlFKUaBVNDgFoFkdAklqTEBKcu3V9lChoBmgJaA9DCOHQWzy8kUBAlIaUUpRoFUvFaBZHQJJbDRKHwgF1fZQoaAZoCWgPQwhgkzXqISlvQJSGlFKUaBVNHgFoFkdAkltfyXlbNnV9lChoBmgJaA9DCBcQWg/fDnJAlIaUUpRoFU1VAWgWR0CSW8Ev0yxidX2UKGgGaAloD0MIUN8yp0v/cECUhpRSlGgVTRcBaBZHQJJcAaaTfSB1fZQoaAZoCWgPQwjF/x1RYelwQJSGlFKUaBVNNwFoFkdAklxwJb+tKnV9lChoBmgJaA9DCDE/NzTlA3BAlIaUUpRoFU00AWgWR0CSXK4iX6ZZdX2UKGgGaAloD0MIisxc4PIHcUCUhpRSlGgVTSwBaBZHQJJc1Pj4pMJ1fZQoaAZoCWgPQwh0Jm2qrtpyQJSGlFKUaBVNLAFoFkdAkl1FKsdT53V9lChoBmgJaA9DCHtntFVJxnBAlIaUUpRoFU0tAWgWR0CSXf5tFa0QdX2UKGgGaAloD0MI7Bfshm1RR0CUhpRSlGgVS9xoFkdAkl/PMfRu0nV9lChoBmgJaA9DCF3iyAMRxnJAlIaUUpRoFU0LAWgWR0CSYBW07bL2dX2UKGgGaAloD0MIpBgg0cT2cECUhpRSlGgVS+1oFkdAkmCVXaJyhnV9lChoBmgJaA9DCKIJFLGIenBAlIaUUpRoFU0lAWgWR0CSYQcL0BfbdX2UKGgGaAloD0MIRztu+F0fcECUhpRSlGgVTR0BaBZHQJJhIGpuMuR1fZQoaAZoCWgPQwh6NUBpaLxyQJSGlFKUaBVNDgFoFkdAkmGIvWYnfHV9lChoBmgJaA9DCHzUX69whnFAlIaUUpRoFU0LAWgWR0CSYe4NqgyudX2UKGgGaAloD0MI5bM8D26bb0CUhpRSlGgVTS4BaBZHQJJjUD6nBLx1fZQoaAZoCWgPQwhgdk8eVuNxQJSGlFKUaBVL+GgWR0CSY3+lj3EidX2UKGgGaAloD0MIaEEo76PVcECUhpRSlGgVTSoBaBZHQJJjnRu0kW11fZQoaAZoCWgPQwi46c9+5GVwQJSGlFKUaBVNLwFoFkdAkmSUH2RJVnV9lChoBmgJaA9DCFIP0ejOC3NAlIaUUpRoFU06AWgWR0CSZTt0mtyQdX2UKGgGaAloD0MInwCKkSWJb0CUhpRSlGgVTVkBaBZHQJJlTXL/0d11fZQoaAZoCWgPQwh8DixHSCVrQJSGlFKUaBVNzgFoFkdAkmYtS/CZW3V9lChoBmgJaA9DCFG+oIVE3HBAlIaUUpRoFU1WAWgWR0CSZudE9dNWdX2UKGgGaAloD0MID9B9ObPFb0CUhpRSlGgVTTYBaBZHQJJm5ev6j351fZQoaAZoCWgPQwhgAOFDCQ9yQJSGlFKUaBVNDgFoFkdAkmemRFI/aHV9lChoBmgJaA9DCM1XyceuPXBAlIaUUpRoFU0OAWgWR0CSZ+muDBdldX2UKGgGaAloD0MIUyEeiReGbkCUhpRSlGgVTQQBaBZHQJJpHIS13MZ1fZQoaAZoCWgPQwj/69y0WXdwQJSGlFKUaBVNKQFoFkdAkmk0lJHy3HV9lChoBmgJaA9DCCTQYFNnCW5AlIaUUpRoFU0ZAWgWR0CSaUgdwNsndX2UKGgGaAloD0MI8MLWbOUqckCUhpRSlGgVTQUBaBZHQJJpgXN1QqJ1fZQoaAZoCWgPQwgJM23/ygogQJSGlFKUaBVL12gWR0CSabcSGrS3dX2UKGgGaAloD0MITN2VXTDLUUCUhpRSlGgVS8JoFkdAkmoHW8RL9XV9lChoBmgJaA9DCLjIPV3daUtAlIaUUpRoFUv0aBZHQJJqNaGHpKV1fZQoaAZoCWgPQwgcI9kjVKFvQJSGlFKUaBVNSwFoFkdAkmpn0kGA1HV9lChoBmgJaA9DCL6FdePdqG9AlIaUUpRoFU0XAWgWR0CSgdNZNfw7dX2UKGgGaAloD0MIcLGiBtNbcECUhpRSlGgVTRIBaBZHQJKDQLgGbCt1fZQoaAZoCWgPQwjUm1HzFfJwQJSGlFKUaBVNBgFoFkdAkoPG5QP7N3V9lChoBmgJaA9DCGd79Ia7QHFAlIaUUpRoFU04AWgWR0CShElA/s3RdX2UKGgGaAloD0MIFva0wx8ecECUhpRSlGgVS/JoFkdAkoSz6JqIrXV9lChoBmgJaA9DCGhcOBCSKm5AlIaUUpRoFUvyaBZHQJKE85vLowF1fZQoaAZoCWgPQwj1oKAUrXNTQJSGlFKUaBVLqWgWR0CShT/SYw7DdX2UKGgGaAloD0MI845TdCQbOUCUhpRSlGgVS8JoFkdAkoW5AQg9vHV9lChoBmgJaA9DCK4NFeO893JAlIaUUpRoFU07AWgWR0CSheEE1VHXdX2UKGgGaAloD0MILgH4p9R9cUCUhpRSlGgVTTwBaBZHQJKF6x7iQ1d1fZQoaAZoCWgPQwjc14FzhmRxQJSGlFKUaBVL/2gWR0CShm4Glhw3dX2UKGgGaAloD0MIWoC21WyKcUCUhpRSlGgVTRUBaBZHQJKHBqFh5Pd1fZQoaAZoCWgPQwjwFHKlnjZvQJSGlFKUaBVNDQFoFkdAkodHQMQVbnV9lChoBmgJaA9DCNxLGqP1w21AlIaUUpRoFU0jAWgWR0CSh5HqNZNgdX2UKGgGaAloD0MIN6lorL1WcUCUhpRSlGgVTUoBaBZHQJKIIF5fMOh1fZQoaAZoCWgPQwj6XkNw3DBtQJSGlFKUaBVNMAFoFkdAkoi/Nqxkd3V9lChoBmgJaA9DCNO+ub86bXJAlIaUUpRoFU0cAWgWR0CSiQWIoE0SdX2UKGgGaAloD0MI275H/XVdb0CUhpRSlGgVS/JoFkdAkolTx0+1SnV9lChoBmgJaA9DCAlOfSA5DXJAlIaUUpRoFU0GAWgWR0CSijPSDyvtdX2UKGgGaAloD0MIErwhjQrNUUCUhpRSlGgVS/JoFkdAkoqQoXsPa3V9lChoBmgJaA9DCDS5GAPrpXBAlIaUUpRoFU0FAWgWR0CSiqZ62OQydX2UKGgGaAloD0MIlUiil1FOckCUhpRSlGgVS/NoFkdAkosU6YE4enV9lChoBmgJaA9DCGgIxyw7n3BAlIaUUpRoFU0gAWgWR0CSi/JMxoIwdX2UKGgGaAloD0MIEcR5OIHtSkCUhpRSlGgVS+5oFkdAkowiH/Lkj3V9lChoBmgJaA9DCGiu00hLETVAlIaUUpRoFUvRaBZHQJKMSDbrTph1fZQoaAZoCWgPQwiQh767FexvQJSGlFKUaBVNGQFoFkdAkoy0VvddmnV9lChoBmgJaA9DCE4mbhUEM3NAlIaUUpRoFU0qAWgWR0CSjPWq94/vdX2UKGgGaAloD0MI2e2zykzfTUCUhpRSlGgVS8FoFkdAko2HEdeY2XV9lChoBmgJaA9DCH5VLlQ+D3BAlIaUUpRoFUv9aBZHQJKNygi/wiJ1fZQoaAZoCWgPQwg+JefEXgBxQJSGlFKUaBVNTgFoFkdAko4Uwvg3tXV9lChoBmgJaA9DCOcb0T3rDkVAlIaUUpRoFUvJaBZHQJKOZ+iJwbV1fZQoaAZoCWgPQwhSD9HozgFwQJSGlFKUaBVNLAFoFkdAko5nHR1HOXV9lChoBmgJaA9DCK2+uipQ8G5AlIaUUpRoFU0VAWgWR0CSjvGlANXpdX2UKGgGaAloD0MIXeDyWDPucUCUhpRSlGgVTQYBaBZHQJKPc7jkuHx1fZQoaAZoCWgPQwiI9rGC3/5LQJSGlFKUaBVL3GgWR0CSkIFi8WbgdX2UKGgGaAloD0MIr5l8s42McECUhpRSlGgVTRoBaBZHQJKRPHKfWc11fZQoaAZoCWgPQwibOSS1kAhzQJSGlFKUaBVNDQFoFkdAkpFCTUy57XV9lChoBmgJaA9DCOBnXDgQKi1AlIaUUpRoFUvMaBZHQJKRv92ovSN1fZQoaAZoCWgPQwhnmUUo9iBxQJSGlFKUaBVNNgFoFkdAkpJmxptaZHV9lChoBmgJaA9DCFHYRdEDCmxAlIaUUpRoFU0mAWgWR0CSk3u/1xsEdX2UKGgGaAloD0MIrmcIx6ysbUCUhpRSlGgVTSkBaBZHQJKTzJKaodd1fZQoaAZoCWgPQwhNTBdiNcBxQJSGlFKUaBVNJAFoFkdAkpPTRplBhXV9lChoBmgJaA9DCHAofLYO5EVAlIaUUpRoFUvraBZHQJKUcdU83dd1fZQoaAZoCWgPQwiKdD+nICdyQJSGlFKUaBVNMQFoFkdAkpTehPCVKXV9lChoBmgJaA9DCFuVRPaBA3NAlIaUUpRoFU0OAWgWR0CSlQuFHrhSdX2UKGgGaAloD0MICg+aXfcUc0CUhpRSlGgVTQwBaBZHQJKVVEhJRO11fZQoaAZoCWgPQwjfGW1VEhZRQJSGlFKUaBVLvGgWR0CSlaPOY6XCdX2UKGgGaAloD0MI0PBmDd4pc0CUhpRSlGgVTTIBaBZHQJKVrsMRYih1fZQoaAZoCWgPQwjR6Xk3lhlxQJSGlFKUaBVNQQFoFkdAkpXPQ0GeMHV9lChoBmgJaA9DCFOSdTh6znBAlIaUUpRoFUvzaBZHQJKV4Svkill1fZQoaAZoCWgPQwjP2Jds/OtwQJSGlFKUaBVNFgFoFkdAkpYa1stTUHV9lChoBmgJaA9DCCRjtfn/+nFAlIaUUpRoFUv7aBZHQJKXkJY1YQt1fZQoaAZoCWgPQwiL/zuiQiNvQJSGlFKUaBVNFQFoFkdAkpi/m1YyPHV9lChoBmgJaA9DCNKNsKiIB29AlIaUUpRoFU04AWgWR0CSmSUGVzIWdX2UKGgGaAloD0MIn48y4oL7bkCUhpRSlGgVTQsBaBZHQJKaIgHNX5p1fZQoaAZoCWgPQwgqrFRQkQdwQJSGlFKUaBVNNgFoFkdAkppVEuxrz3V9lChoBmgJaA9DCKxY/KawgklAlIaUUpRoFUvNaBZHQJKavpV0cOt1fZQoaAZoCWgPQwgi/8wgPuRIQJSGlFKUaBVL3mgWR0CSmtfhddE9dX2UKGgGaAloD0MIrrZif5lvcECUhpRSlGgVTRkBaBZHQJKa5klNUOx1fZQoaAZoCWgPQwgGoFG6tKhyQJSGlFKUaBVNAQFoFkdAkprmwu/UOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2c948cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2c948cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2c948cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2c948ce50>", "_build": "<function ActorCriticPolicy._build at 0x7fe2c948cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2c948cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2c9491040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2c94910d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2c9491160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2c94911f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2c9491280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2c948a450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672051033256852007, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM6Nj4XeBc/tNs4vpQkcr7QD8A8nlrQvQAAAAAAAAAAZiqfPR46QD97AJ+8F+zVvnqd9Tyc3L69AAAAAAAAAACz/0E+pCbsPqichb5TJJi+/yKkPMba7L0AAAAAAAAAAADiOrzSnck86HsovbSLLL4iKvi8Q1KYvAAAAAAAAAAATYcMPVwvNLr9PR8zvlqisCEW+Do4Cc2zAACAPwAAgD+NS5M9DEzKPjr9273sSoG+yBhdvWYU2zwAAAAAAAAAAOYsCL0y8a8/8gwIv4Loq74JXhU8NWWJvQAAAAAAAAAAzT2/PGoG1T7aYdY89ACZvsrt8rzloBu7AAAAAAAAAADNzO46wyIQvGDIA7ypoZM88mRlPUXFdb0AAIA/AACAPwBQ6DxGZr0/3m0RPj7yDL5mjg4+yYc3PQAAAAAAAAAAZrravZ0EsT5N9sk9D8SyvpLBRb23YUE9AAAAAAAAAACamkm99iq3PwaLp75n5969Z/ezvN6L+r0AAAAAAAAAAGYEvrz1hbY/upMSvx7KAj4FhI88QJEiPQAAAAAAAAAApi8tvmZMrj5KxCs/RG7rvkltQTyDm9I+AAAAAAAAAADNmqk84R+sP4HTBz4itca+yh2xPbAtkzsAAAAAAAAAAGb7Zj2OLMo+8hKBPTUlwL7RKNo96ZQjPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU0FF1W/NcECUhpRSlIwBbJRL14wBdJRHQKx9++nqFAV1fZQoaAZoCWgPQwhEhlW80YtxQJSGlFKUaBVL32gWR0Csfkgqd6LPdX2UKGgGaAloD0MIX0NwXMZUcECUhpRSlGgVTQsBaBZHQKx+U5jH4oJ1fZQoaAZoCWgPQwi/gF64sxlzQJSGlFKUaBVL0GgWR0CsfqZgw482dX2UKGgGaAloD0MIDeIDO/5+cUCUhpRSlGgVS9JoFkdArH60z9CNTHV9lChoBmgJaA9DCLNEZ5nFLXFAlIaUUpRoFUvdaBZHQKx+2SpR4yJ1fZQoaAZoCWgPQwhmMhzPZzpyQJSGlFKUaBVNFQFoFkdArH9ybSZ0CHV9lChoBmgJaA9DCP8Iw4DlJ3NAlIaUUpRoFUvwaBZHQKx/uNBF/hF1fZQoaAZoCWgPQwhlGeJYl/FyQJSGlFKUaBVL6GgWR0Csf7xoysS1dX2UKGgGaAloD0MIexSuR2HXcUCUhpRSlGgVS7loFkdArIAo9ovi+HV9lChoBmgJaA9DCD7pRIJpHnJAlIaUUpRoFU0MAWgWR0CsgEYMvyskdX2UKGgGaAloD0MIeVvptRlVcUCUhpRSlGgVTU0BaBZHQKyAdE+gUUR1fZQoaAZoCWgPQwgcBvNXiJVyQJSGlFKUaBVNAgFoFkdArIBzNwBHTnV9lChoBmgJaA9DCIwUysJXgXFAlIaUUpRoFUv5aBZHQKyAiKc/dIp1fZQoaAZoCWgPQwg0go3rn2VwQJSGlFKUaBVL+WgWR0CsgNeu/1xsdX2UKGgGaAloD0MI3Zp0WyJ6bkCUhpRSlGgVS9hoFkdArIELEUCaJHV9lChoBmgJaA9DCMVW0LTEeHNAlIaUUpRoFU0WAWgWR0CsgRAzYVZcdX2UKGgGaAloD0MIH0dzZCW3cUCUhpRSlGgVS/9oFkdArIEwoVmBfHV9lChoBmgJaA9DCMUbmUf+/m9AlIaUUpRoFUvNaBZHQKyBVdX1ant1fZQoaAZoCWgPQwiSPxh47nxxQJSGlFKUaBVL2GgWR0CsgWns1KoRdX2UKGgGaAloD0MIrMlTVpO4ckCUhpRSlGgVS9loFkdArIGa0UoKD3V9lChoBmgJaA9DCN3PKcjPRHBAlIaUUpRoFU0NAWgWR0CsgayBshxHdX2UKGgGaAloD0MINEsC1BSwckCUhpRSlGgVS8poFkdArIHrwMH8j3V9lChoBmgJaA9DCLkANEpXpHBAlIaUUpRoFUvmaBZHQKyCeBT4tYl1fZQoaAZoCWgPQwjMf0i/vahyQJSGlFKUaBVL7mgWR0CsgpGKqGUOdX2UKGgGaAloD0MIH0q05PGZcUCUhpRSlGgVS8loFkdArIKX1xsEaHV9lChoBmgJaA9DCOnuOhsyvXFAlIaUUpRoFUvvaBZHQKyC9uIhyKh1fZQoaAZoCWgPQwh+G2K85pVvQJSGlFKUaBVL22gWR0CsgvrwF1SwdX2UKGgGaAloD0MIqdpugu/Hb0CUhpRSlGgVTQMBaBZHQKyPS5J9RaZ1fZQoaAZoCWgPQwjgEKrU7O1VQJSGlFKUaBVLoWgWR0Csj2P9LpRodX2UKGgGaAloD0MIrFj8pnBTcECUhpRSlGgVS+1oFkdArI9wFvAGjnV9lChoBmgJaA9DCMhbrn7sk3JAlIaUUpRoFU0FAWgWR0Csj2pDVpbmdX2UKGgGaAloD0MIYYkHlM3ocUCUhpRSlGgVS85oFkdArI+QOlO45XV9lChoBmgJaA9DCO9yEd+JxnFAlIaUUpRoFUvxaBZHQKyPslSCOFR1fZQoaAZoCWgPQwhqMXiYtvJzQJSGlFKUaBVL2mgWR0Csj8be/Ho6dX2UKGgGaAloD0MIc5zbhLvOcECUhpRSlGgVS/toFkdArI/Jyfcvd3V9lChoBmgJaA9DCA2Jeyz94G9AlIaUUpRoFUvtaBZHQKyQKUPhAGB1fZQoaAZoCWgPQwiuZp3x/R5uQJSGlFKUaBVNFQFoFkdArJAv6qKgqXV9lChoBmgJaA9DCEW4yaiynXJAlIaUUpRoFUvkaBZHQKyRC6fapP11fZQoaAZoCWgPQwgV4SajykZxQJSGlFKUaBVNHgFoFkdArJER8neBQXV9lChoBmgJaA9DCGtEMA6uTXJAlIaUUpRoFUvuaBZHQKyRFNet0V91fZQoaAZoCWgPQwg6yyxCMVFvQJSGlFKUaBVL7GgWR0CskSrA57w8dX2UKGgGaAloD0MITDPd6yQGc0CUhpRSlGgVS/toFkdArJG1t/FzdXV9lChoBmgJaA9DCMbBpWOO4nBAlIaUUpRoFUv7aBZHQKyRud07r9l1fZQoaAZoCWgPQwg+sU6VrwdxQJSGlFKUaBVL2mgWR0CskczisGPgdX2UKGgGaAloD0MIaHVyhmKPb0CUhpRSlGgVS9doFkdArJHkBU70WnV9lChoBmgJaA9DCFTFVPrJVHJAlIaUUpRoFUvLaBZHQKyR4HGCI1t1fZQoaAZoCWgPQwhOnNzvkP9wQJSGlFKUaBVLyWgWR0CskgvHktEodX2UKGgGaAloD0MI4PWZsz4zbkCUhpRSlGgVS+poFkdArJIOsgdOqXV9lChoBmgJaA9DCJF8JZBS6HFAlIaUUpRoFUvVaBZHQKySKUTL4et1fZQoaAZoCWgPQwjqruyCQWpvQJSGlFKUaBVL/GgWR0Cskjp4KQaKdX2UKGgGaAloD0MIahX9oRnCbECUhpRSlGgVS9hoFkdArJKQokRjBnV9lChoBmgJaA9DCCWQErv23nFAlIaUUpRoFU0UAWgWR0Cskrh0hePadX2UKGgGaAloD0MIfZHQlvNibkCUhpRSlGgVS+ZoFkdArJK7cynDSHV9lChoBmgJaA9DCIkjD0QWn3FAlIaUUpRoFUvFaBZHQKyTJLKV6eJ1fZQoaAZoCWgPQwiVu8/xUcxyQJSGlFKUaBVLyWgWR0CskzRnnMdMdX2UKGgGaAloD0MIXW4w1KHzckCUhpRSlGgVS/VoFkdArJO/4Glhw3V9lChoBmgJaA9DCP/mxYkvFnNAlIaUUpRoFU0SAWgWR0CslDxx95QhdX2UKGgGaAloD0MImKQyxRxgbUCUhpRSlGgVS+poFkdArJRvHWBjF3V9lChoBmgJaA9DCAHD8udbmXFAlIaUUpRoFUv5aBZHQKyUkMglnh91fZQoaAZoCWgPQwgBMnTsoDxxQJSGlFKUaBVL7mgWR0CslJxLK3d9dX2UKGgGaAloD0MIxOxl2ynkcUCUhpRSlGgVS+RoFkdArJSyEFnqV3V9lChoBmgJaA9DCPt46Lvb7W5AlIaUUpRoFU0HAWgWR0CslO59uxbCdX2UKGgGaAloD0MIkNlZ9M5VbUCUhpRSlGgVS/FoFkdArJUDh5xBFHV9lChoBmgJaA9DCD7ONGF7dHFAlIaUUpRoFUv7aBZHQKyVA7qY7aJ1fZQoaAZoCWgPQwiWBn5UAxhzQJSGlFKUaBVNIAFoFkdArJUSHoHLR3V9lChoBmgJaA9DCI9QM6QKqW1AlIaUUpRoFUvTaBZHQKyVTTXJ5mh1fZQoaAZoCWgPQwgIkQw59tZwQJSGlFKUaBVNEQFoFkdArJVwJTl1bXV9lChoBmgJaA9DCCDT2jQ2Qm1AlIaUUpRoFUvgaBZHQKyVcAPNFBp1fZQoaAZoCWgPQwhOZOYClwxwQJSGlFKUaBVL9WgWR0CslYJNbkfcdX2UKGgGaAloD0MIGHsvvqgbcECUhpRSlGgVS/BoFkdArJYWJJoTPHV9lChoBmgJaA9DCFyv6UFBbnFAlIaUUpRoFU0nAWgWR0Csls5CWu5jdX2UKGgGaAloD0MIur4PB8kuckCUhpRSlGgVS9loFkdArJcgSL61s3V9lChoBmgJaA9DCFQaMbPP+nFAlIaUUpRoFUvcaBZHQKyXNZ5iVjZ1fZQoaAZoCWgPQwhdjIF1XGtwQJSGlFKUaBVL2GgWR0Cslz2uX/o8dX2UKGgGaAloD0MIEmiwqfPtcECUhpRSlGgVTSEBaBZHQKyXU4ku6Et1fZQoaAZoCWgPQwiZ9PdSeKNyQJSGlFKUaBVLyGgWR0Csl1j2i+L4dX2UKGgGaAloD0MIRZxOspXEckCUhpRSlGgVS9doFkdArJeHtQbdanV9lChoBmgJaA9DCPq5oSl7w3FAlIaUUpRoFUvfaBZHQKyXjgogFHJ1fZQoaAZoCWgPQwjBkUCDDfFwQJSGlFKUaBVNHQFoFkdArJe5tix3V3V9lChoBmgJaA9DCEONQpJZSXJAlIaUUpRoFUvLaBZHQKyX207bL2Z1fZQoaAZoCWgPQwie0sH6/1pwQJSGlFKUaBVL1GgWR0Csl/Se7L+xdX2UKGgGaAloD0MIHlN3ZZdlckCUhpRSlGgVS9RoFkdArJgFNg0CR3V9lChoBmgJaA9DCJCg+DGmaHBAlIaUUpRoFU0vAWgWR0CsmBLgn+hodX2UKGgGaAloD0MI6MHdWTshckCUhpRSlGgVS/9oFkdArJhGrS3LFHV9lChoBmgJaA9DCC1gArfu525AlIaUUpRoFU0XAWgWR0CsmEzbN8mbdX2UKGgGaAloD0MIEeLK2btGcUCUhpRSlGgVS/xoFkdArJkCaAnUlXV9lChoBmgJaA9DCAD9vn/ziVBAlIaUUpRoFUu7aBZHQKyZsuOjqOd1fZQoaAZoCWgPQwjadARwcyVzQJSGlFKUaBVL0mgWR0Csmck4m1IAdX2UKGgGaAloD0MIHR8tzhh8ckCUhpRSlGgVS+doFkdArJncuYhManV9lChoBmgJaA9DCFg33h2ZS3BAlIaUUpRoFUvjaBZHQKyZ5C79Q411fZQoaAZoCWgPQwgiVRSv8pByQJSGlFKUaBVL22gWR0CsmeZB9kSVdX2UKGgGaAloD0MIRDS6gxhcckCUhpRSlGgVTQUBaBZHQKyZ76WPcSJ1fZQoaAZoCWgPQwj5S4v6JABzQJSGlFKUaBVL12gWR0CsmgmtITXbdX2UKGgGaAloD0MIIXh8e1chcUCUhpRSlGgVS+FoFkdArJpYL9deIHV9lChoBmgJaA9DCDkKEAXz5nBAlIaUUpRoFUv6aBZHQKya99WIXTF1fZQoaAZoCWgPQwhdv2A3LDtwQJSGlFKUaBVNOAFoFkdArJsFfZ26kXV9lChoBmgJaA9DCCJS0y5mYHBAlIaUUpRoFUv8aBZHQKybFBBRhtt1fZQoaAZoCWgPQwjZsnxdRgpzQJSGlFKUaBVNEwFoFkdArJssuHvc8HV9lChoBmgJaA9DCGsnSkIi/W1AlIaUUpRoFU0BAWgWR0CsmzHXmNipdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 615, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.989, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3d43acd95f945d3d9349886dbff256a07c3160c4741b17d813c511ad08cdfed
|
3 |
+
size 147119
|
ppo-LunarLander-v2/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,19 +66,19 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
-
"gae_lambda": 0.
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1672051033256852007,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHM6Nj4XeBc/tNs4vpQkcr7QD8A8nlrQvQAAAAAAAAAAZiqfPR46QD97AJ+8F+zVvnqd9Tyc3L69AAAAAAAAAACz/0E+pCbsPqichb5TJJi+/yKkPMba7L0AAAAAAAAAAADiOrzSnck86HsovbSLLL4iKvi8Q1KYvAAAAAAAAAAATYcMPVwvNLr9PR8zvlqisCEW+Do4Cc2zAACAPwAAgD+NS5M9DEzKPjr9273sSoG+yBhdvWYU2zwAAAAAAAAAAOYsCL0y8a8/8gwIv4Loq74JXhU8NWWJvQAAAAAAAAAAzT2/PGoG1T7aYdY89ACZvsrt8rzloBu7AAAAAAAAAADNzO46wyIQvGDIA7ypoZM88mRlPUXFdb0AAIA/AACAPwBQ6DxGZr0/3m0RPj7yDL5mjg4+yYc3PQAAAAAAAAAAZrravZ0EsT5N9sk9D8SyvpLBRb23YUE9AAAAAAAAAACamkm99iq3PwaLp75n5969Z/ezvN6L+r0AAAAAAAAAAGYEvrz1hbY/upMSvx7KAj4FhI88QJEiPQAAAAAAAAAApi8tvmZMrj5KxCs/RG7rvkltQTyDm9I+AAAAAAAAAADNmqk84R+sP4HTBz4itca+yh2xPbAtkzsAAAAAAAAAAGb7Zj2OLMo+8hKBPTUlwL7RKNo96ZQjPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU0FF1W/NcECUhpRSlIwBbJRL14wBdJRHQKx9++nqFAV1fZQoaAZoCWgPQwhEhlW80YtxQJSGlFKUaBVL32gWR0Csfkgqd6LPdX2UKGgGaAloD0MIX0NwXMZUcECUhpRSlGgVTQsBaBZHQKx+U5jH4oJ1fZQoaAZoCWgPQwi/gF64sxlzQJSGlFKUaBVL0GgWR0CsfqZgw482dX2UKGgGaAloD0MIDeIDO/5+cUCUhpRSlGgVS9JoFkdArH60z9CNTHV9lChoBmgJaA9DCLNEZ5nFLXFAlIaUUpRoFUvdaBZHQKx+2SpR4yJ1fZQoaAZoCWgPQwhmMhzPZzpyQJSGlFKUaBVNFQFoFkdArH9ybSZ0CHV9lChoBmgJaA9DCP8Iw4DlJ3NAlIaUUpRoFUvwaBZHQKx/uNBF/hF1fZQoaAZoCWgPQwhlGeJYl/FyQJSGlFKUaBVL6GgWR0Csf7xoysS1dX2UKGgGaAloD0MIexSuR2HXcUCUhpRSlGgVS7loFkdArIAo9ovi+HV9lChoBmgJaA9DCD7pRIJpHnJAlIaUUpRoFU0MAWgWR0CsgEYMvyskdX2UKGgGaAloD0MIeVvptRlVcUCUhpRSlGgVTU0BaBZHQKyAdE+gUUR1fZQoaAZoCWgPQwgcBvNXiJVyQJSGlFKUaBVNAgFoFkdArIBzNwBHTnV9lChoBmgJaA9DCIwUysJXgXFAlIaUUpRoFUv5aBZHQKyAiKc/dIp1fZQoaAZoCWgPQwg0go3rn2VwQJSGlFKUaBVL+WgWR0CsgNeu/1xsdX2UKGgGaAloD0MI3Zp0WyJ6bkCUhpRSlGgVS9hoFkdArIELEUCaJHV9lChoBmgJaA9DCMVW0LTEeHNAlIaUUpRoFU0WAWgWR0CsgRAzYVZcdX2UKGgGaAloD0MIH0dzZCW3cUCUhpRSlGgVS/9oFkdArIEwoVmBfHV9lChoBmgJaA9DCMUbmUf+/m9AlIaUUpRoFUvNaBZHQKyBVdX1ant1fZQoaAZoCWgPQwiSPxh47nxxQJSGlFKUaBVL2GgWR0CsgWns1KoRdX2UKGgGaAloD0MIrMlTVpO4ckCUhpRSlGgVS9loFkdArIGa0UoKD3V9lChoBmgJaA9DCN3PKcjPRHBAlIaUUpRoFU0NAWgWR0CsgayBshxHdX2UKGgGaAloD0MINEsC1BSwckCUhpRSlGgVS8poFkdArIHrwMH8j3V9lChoBmgJaA9DCLkANEpXpHBAlIaUUpRoFUvmaBZHQKyCeBT4tYl1fZQoaAZoCWgPQwjMf0i/vahyQJSGlFKUaBVL7mgWR0CsgpGKqGUOdX2UKGgGaAloD0MIH0q05PGZcUCUhpRSlGgVS8loFkdArIKX1xsEaHV9lChoBmgJaA9DCOnuOhsyvXFAlIaUUpRoFUvvaBZHQKyC9uIhyKh1fZQoaAZoCWgPQwh+G2K85pVvQJSGlFKUaBVL22gWR0CsgvrwF1SwdX2UKGgGaAloD0MIqdpugu/Hb0CUhpRSlGgVTQMBaBZHQKyPS5J9RaZ1fZQoaAZoCWgPQwjgEKrU7O1VQJSGlFKUaBVLoWgWR0Csj2P9LpRodX2UKGgGaAloD0MIrFj8pnBTcECUhpRSlGgVS+1oFkdArI9wFvAGjnV9lChoBmgJaA9DCMhbrn7sk3JAlIaUUpRoFU0FAWgWR0Csj2pDVpbmdX2UKGgGaAloD0MIYYkHlM3ocUCUhpRSlGgVS85oFkdArI+QOlO45XV9lChoBmgJaA9DCO9yEd+JxnFAlIaUUpRoFUvxaBZHQKyPslSCOFR1fZQoaAZoCWgPQwhqMXiYtvJzQJSGlFKUaBVL2mgWR0Csj8be/Ho6dX2UKGgGaAloD0MIc5zbhLvOcECUhpRSlGgVS/toFkdArI/Jyfcvd3V9lChoBmgJaA9DCA2Jeyz94G9AlIaUUpRoFUvtaBZHQKyQKUPhAGB1fZQoaAZoCWgPQwiuZp3x/R5uQJSGlFKUaBVNFQFoFkdArJAv6qKgqXV9lChoBmgJaA9DCEW4yaiynXJAlIaUUpRoFUvkaBZHQKyRC6fapP11fZQoaAZoCWgPQwgV4SajykZxQJSGlFKUaBVNHgFoFkdArJER8neBQXV9lChoBmgJaA9DCGtEMA6uTXJAlIaUUpRoFUvuaBZHQKyRFNet0V91fZQoaAZoCWgPQwg6yyxCMVFvQJSGlFKUaBVL7GgWR0CskSrA57w8dX2UKGgGaAloD0MITDPd6yQGc0CUhpRSlGgVS/toFkdArJG1t/FzdXV9lChoBmgJaA9DCMbBpWOO4nBAlIaUUpRoFUv7aBZHQKyRud07r9l1fZQoaAZoCWgPQwg+sU6VrwdxQJSGlFKUaBVL2mgWR0CskczisGPgdX2UKGgGaAloD0MIaHVyhmKPb0CUhpRSlGgVS9doFkdArJHkBU70WnV9lChoBmgJaA9DCFTFVPrJVHJAlIaUUpRoFUvLaBZHQKyR4HGCI1t1fZQoaAZoCWgPQwhOnNzvkP9wQJSGlFKUaBVLyWgWR0CskgvHktEodX2UKGgGaAloD0MI4PWZsz4zbkCUhpRSlGgVS+poFkdArJIOsgdOqXV9lChoBmgJaA9DCJF8JZBS6HFAlIaUUpRoFUvVaBZHQKySKUTL4et1fZQoaAZoCWgPQwjqruyCQWpvQJSGlFKUaBVL/GgWR0Cskjp4KQaKdX2UKGgGaAloD0MIahX9oRnCbECUhpRSlGgVS9hoFkdArJKQokRjBnV9lChoBmgJaA9DCCWQErv23nFAlIaUUpRoFU0UAWgWR0Cskrh0hePadX2UKGgGaAloD0MIfZHQlvNibkCUhpRSlGgVS+ZoFkdArJK7cynDSHV9lChoBmgJaA9DCIkjD0QWn3FAlIaUUpRoFUvFaBZHQKyTJLKV6eJ1fZQoaAZoCWgPQwiVu8/xUcxyQJSGlFKUaBVLyWgWR0CskzRnnMdMdX2UKGgGaAloD0MIXW4w1KHzckCUhpRSlGgVS/VoFkdArJO/4Glhw3V9lChoBmgJaA9DCP/mxYkvFnNAlIaUUpRoFU0SAWgWR0CslDxx95QhdX2UKGgGaAloD0MImKQyxRxgbUCUhpRSlGgVS+poFkdArJRvHWBjF3V9lChoBmgJaA9DCAHD8udbmXFAlIaUUpRoFUv5aBZHQKyUkMglnh91fZQoaAZoCWgPQwgBMnTsoDxxQJSGlFKUaBVL7mgWR0CslJxLK3d9dX2UKGgGaAloD0MIxOxl2ynkcUCUhpRSlGgVS+RoFkdArJSyEFnqV3V9lChoBmgJaA9DCPt46Lvb7W5AlIaUUpRoFU0HAWgWR0CslO59uxbCdX2UKGgGaAloD0MIkNlZ9M5VbUCUhpRSlGgVS/FoFkdArJUDh5xBFHV9lChoBmgJaA9DCD7ONGF7dHFAlIaUUpRoFUv7aBZHQKyVA7qY7aJ1fZQoaAZoCWgPQwiWBn5UAxhzQJSGlFKUaBVNIAFoFkdArJUSHoHLR3V9lChoBmgJaA9DCI9QM6QKqW1AlIaUUpRoFUvTaBZHQKyVTTXJ5mh1fZQoaAZoCWgPQwgIkQw59tZwQJSGlFKUaBVNEQFoFkdArJVwJTl1bXV9lChoBmgJaA9DCCDT2jQ2Qm1AlIaUUpRoFUvgaBZHQKyVcAPNFBp1fZQoaAZoCWgPQwhOZOYClwxwQJSGlFKUaBVL9WgWR0CslYJNbkfcdX2UKGgGaAloD0MIGHsvvqgbcECUhpRSlGgVS/BoFkdArJYWJJoTPHV9lChoBmgJaA9DCFyv6UFBbnFAlIaUUpRoFU0nAWgWR0Csls5CWu5jdX2UKGgGaAloD0MIur4PB8kuckCUhpRSlGgVS9loFkdArJcgSL61s3V9lChoBmgJaA9DCFQaMbPP+nFAlIaUUpRoFUvcaBZHQKyXNZ5iVjZ1fZQoaAZoCWgPQwhdjIF1XGtwQJSGlFKUaBVL2GgWR0Cslz2uX/o8dX2UKGgGaAloD0MIEmiwqfPtcECUhpRSlGgVTSEBaBZHQKyXU4ku6Et1fZQoaAZoCWgPQwiZ9PdSeKNyQJSGlFKUaBVLyGgWR0Csl1j2i+L4dX2UKGgGaAloD0MIRZxOspXEckCUhpRSlGgVS9doFkdArJeHtQbdanV9lChoBmgJaA9DCPq5oSl7w3FAlIaUUpRoFUvfaBZHQKyXjgogFHJ1fZQoaAZoCWgPQwjBkUCDDfFwQJSGlFKUaBVNHQFoFkdArJe5tix3V3V9lChoBmgJaA9DCEONQpJZSXJAlIaUUpRoFUvLaBZHQKyX207bL2Z1fZQoaAZoCWgPQwie0sH6/1pwQJSGlFKUaBVL1GgWR0Csl/Se7L+xdX2UKGgGaAloD0MIHlN3ZZdlckCUhpRSlGgVS9RoFkdArJgFNg0CR3V9lChoBmgJaA9DCJCg+DGmaHBAlIaUUpRoFU0vAWgWR0CsmBLgn+hodX2UKGgGaAloD0MI6MHdWTshckCUhpRSlGgVS/9oFkdArJhGrS3LFHV9lChoBmgJaA9DCC1gArfu525AlIaUUpRoFU0XAWgWR0CsmEzbN8mbdX2UKGgGaAloD0MIEeLK2btGcUCUhpRSlGgVS/xoFkdArJkCaAnUlXV9lChoBmgJaA9DCAD9vn/ziVBAlIaUUpRoFUu7aBZHQKyZsuOjqOd1fZQoaAZoCWgPQwjadARwcyVzQJSGlFKUaBVL0mgWR0Csmck4m1IAdX2UKGgGaAloD0MIHR8tzhh8ckCUhpRSlGgVS+doFkdArJncuYhManV9lChoBmgJaA9DCFg33h2ZS3BAlIaUUpRoFUvjaBZHQKyZ5C79Q411fZQoaAZoCWgPQwgiVRSv8pByQJSGlFKUaBVL22gWR0CsmeZB9kSVdX2UKGgGaAloD0MIRDS6gxhcckCUhpRSlGgVTQUBaBZHQKyZ76WPcSJ1fZQoaAZoCWgPQwj5S4v6JABzQJSGlFKUaBVL12gWR0CsmgmtITXbdX2UKGgGaAloD0MIIXh8e1chcUCUhpRSlGgVS+FoFkdArJpYL9deIHV9lChoBmgJaA9DCDkKEAXz5nBAlIaUUpRoFUv6aBZHQKya99WIXTF1fZQoaAZoCWgPQwhdv2A3LDtwQJSGlFKUaBVNOAFoFkdArJsFfZ26kXV9lChoBmgJaA9DCCJS0y5mYHBAlIaUUpRoFUv8aBZHQKybFBBRhtt1fZQoaAZoCWgPQwjZsnxdRgpzQJSGlFKUaBVNEwFoFkdArJssuHvc8HV9lChoBmgJaA9DCGsnSkIi/W1AlIaUUpRoFU0BAWgWR0CsmzHXmNipdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 615,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.989,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42ab6efed94bfa203aedd199db36034c62a481f0ee49cab07ae00b993ad7a96d
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0114d34b20bab3c484cfb7671dff60a6fd16851e40546d0a47ff2c4f75e2e82
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 262.69787998123155, "std_reward": 22.662402798528092, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-26T11:10:46.982530"}
|