Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 236.85 +/- 63.44
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe00017f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe00017f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe00017f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe00017f830>", "_build": "<function ActorCriticPolicy._build at 0x7fe00017f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe00017f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe00017f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe00017fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe00017fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe00017fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe00017fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe0001da0f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668718786987042554, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADp/7j5RuRG+8utTPfs2KrwW8TS+8J27PAAAgD8AAIA/WoLxPtHiY726Sy++Al+JvnbOf74QWGK/AAAAAAAAgD9Kf36+LM2PPDH/Bjt5m1W5AxQevsqzKroAAIA/AACAPzPpFjwAbpk/XWZDPbVN1L562QI9Jg7WPAAAAAAAAAAA85u/PSngJLo4rY+5yel6tNTotLpHCKY4AACAPwAAgD97YYu+PR1Yu1RMuTrGuZk3zRyZPG4I17kAAIA/AACAP5qZ/b38vXY9TmO3PWHrG77E/6u8xR2sugAAAAAAAAAA7d2qPiTlab1SGjy7t6+lN2CQlL57YfS6AACAPwAAgD/NMlk9bnemP8SNlT563YS+zzFJPfDvEz4AAAAAAAAAAPp2Aj5Fa2E+GNlIu49bS742Ba69TdAJvQAAAAAAAAAAeg0+vjZNGbwq52Y7a95SOS0vez0azyO6AACAPwAAgD+Nn2m+LOzZPKX76TsRzmy61rNxvtccJzsAAIA/AACAP6M4nj5cwHW8lShivPAPVTpmwLW91q+zNQAAgD8AAIA/ALVCPle/MjxOffy5zrIDuPUkxT0zDRo5AACAPwAAgD84erC+VE3Rvdb+jrk3JXa4n0j4PjESRzgAAIA/AACAPwAm3j32TAu64eY+O4IwLzaP7LK6XjcoNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKxTpfs7DYkCUhpRSlIwBbJRN6AOMAXSUR0CDtYxeLNwBdX2UKGgGaAloD0MIdv9YiA5zXkCUhpRSlGgVTegDaBZHQIO1thJAdGR1fZQoaAZoCWgPQwhLPnYXKGhhQJSGlFKUaBVN6ANoFkdAg75pb+tKZnV9lChoBmgJaA9DCKhWX10VYF9AlIaUUpRoFU3oA2gWR0CDyeeyzHCGdX2UKGgGaAloD0MILNhGPNnVNUCUhpRSlGgVTQkBaBZHQIP9jaPCEYh1fZQoaAZoCWgPQwgnTBjNyuI+wJSGlFKUaBVL12gWR0CEAIQPI4lydX2UKGgGaAloD0MIXk2espo4YECUhpRSlGgVTegDaBZHQIQEM7r9l3B1fZQoaAZoCWgPQwgyWkdVE0JmQJSGlFKUaBVN6ANoFkdAhAydwFTvRnV9lChoBmgJaA9DCDnSGRh5Pl1AlIaUUpRoFU3oA2gWR0CEDOd1dPcjdX2UKGgGaAloD0MIZTTyecWyVUCUhpRSlGgVTegDaBZHQIQOBsl9jPR1fZQoaAZoCWgPQwjAdjBin75eQJSGlFKUaBVN6ANoFkdAhA+D3mFJx3V9lChoBmgJaA9DCHQMyF7vxWBAlIaUUpRoFU3oA2gWR0CEEbHI6r/9dX2UKGgGaAloD0MIyCO4kbJoX0CUhpRSlGgVTegDaBZHQIQZoskIHC51fZQoaAZoCWgPQwjXM4RjlildQJSGlFKUaBVN6ANoFkdAhB95of0VanV9lChoBmgJaA9DCP8G7dXHVltAlIaUUpRoFU3oA2gWR0CEIAfgaWHDdX2UKGgGaAloD0MIYRbaOc0ySECUhpRSlGgVS7xoFkdAhCRVO0svqXV9lChoBmgJaA9DCJ6VtOIbYENAlIaUUpRoFUvgaBZHQIQqR4D9wWF1fZQoaAZoCWgPQwhP6svSTltWQJSGlFKUaBVN6ANoFkdAhC5eh4+r2nV9lChoBmgJaA9DCPbRqSufqTpAlIaUUpRoFUuzaBZHQIQyAl6Z6Ut1fZQoaAZoCWgPQwjMQGX8+6FQwJSGlFKUaBVNFwFoFkdAhDQ30PH1e3V9lChoBmgJaA9DCDBMpgpG6GBAlIaUUpRoFU3oA2gWR0CEUaLkS26TdX2UKGgGaAloD0MI8L4qFyq7WECUhpRSlGgVTegDaBZHQIRZdXko4Mp1fZQoaAZoCWgPQwiESIYcW0pgQJSGlFKUaBVN6ANoFkdAhFsKrR0EHXV9lChoBmgJaA9DCAyx+iMMBV1AlIaUUpRoFU3oA2gWR0CEbvV1fVqfdX2UKGgGaAloD0MIATJ07KAEYUCUhpRSlGgVTegDaBZHQISiSowVTJh1fZQoaAZoCWgPQwikbmdfeU9jQJSGlFKUaBVN6ANoFkdAhKT8M3IdVHV9lChoBmgJaA9DCMqIC0CjcV1AlIaUUpRoFU3oA2gWR0CEqCdYnv2HdX2UKGgGaAloD0MIwavlzkw4T0CUhpRSlGgVTegDaBZHQISvxI1+AmR1fZQoaAZoCWgPQwhcx7jiYupnQJSGlFKUaBVN6AJoFkdAhLNUwJw84nV9lChoBmgJaA9DCF/SGK2j62NAlIaUUpRoFU3oA2gWR0CEtJysjmjkdX2UKGgGaAloD0MIAaPLm8NfTkCUhpRSlGgVTegDaBZHQITAIX9BKL91fZQoaAZoCWgPQwgf+BisuIliQJSGlFKUaBVN6ANoFkdAhMCY5T6zmnV9lChoBmgJaA9DCAzKNJpceWRAlIaUUpRoFU3oA2gWR0CExGIt16mgdX2UKGgGaAloD0MIHZHvUmpmY0CUhpRSlGgVTegDaBZHQITJPGp++dt1fZQoaAZoCWgPQwgvpMNDGKJZQJSGlFKUaBVN6ANoFkdAhMxBAv+OwXV9lChoBmgJaA9DCFnbFI+LgGFAlIaUUpRoFU3oA2gWR0CE0pZYgaFVdX2UKGgGaAloD0MIp0HRPIDdL8CUhpRSlGgVS+VoFkdAhN51Li++NHV9lChoBmgJaA9DCDepaKz9QWNAlIaUUpRoFU3oA2gWR0CE+uxO+IuXdX2UKGgGaAloD0MILlOT4A3/YUCUhpRSlGgVTegDaBZHQIUDRVU+9rZ1fZQoaAZoCWgPQwjxL4LGTLpdQJSGlFKUaBVN6ANoFkdAhQUiHh0heXV9lChoBmgJaA9DCH7FGi5yJyhAlIaUUpRoFUv8aBZHQIUFzewcHW11fZQoaAZoCWgPQwiNDHIXYQFUQJSGlFKUaBVN6ANoFkdAhRsGhdt2tHV9lChoBmgJaA9DCEpATMKFFWVAlIaUUpRoFU3oA2gWR0CFUBk0aZQYdX2UKGgGaAloD0MI11BqL6IPWUCUhpRSlGgVTegDaBZHQIVTGj7ALzB1fZQoaAZoCWgPQwgPY9LfS5lUQJSGlFKUaBVN6ANoFkdAhVa6TOgQH3V9lChoBmgJaA9DCGRXWkbqClxAlIaUUpRoFU3oA2gWR0CFXuDr7fpEdX2UKGgGaAloD0MImzxlNV3XW0CUhpRSlGgVTegDaBZHQIVismY0EYB1fZQoaAZoCWgPQwjoTUUqjCtfQJSGlFKUaBVN6ANoFkdAhWQpR4yGjHV9lChoBmgJaA9DCFvtYS8Ull5AlIaUUpRoFU3oA2gWR0CFcQogmqo7dX2UKGgGaAloD0MIoGtfQK/jYECUhpRSlGgVTegDaBZHQIV1lYnv2Gt1fZQoaAZoCWgPQwgAOsyXF5FfQJSGlFKUaBVN6ANoFkdAhXsh8YyftnV9lChoBmgJaA9DCNhK6C6JPlpAlIaUUpRoFU3oA2gWR0CFflAUL2HtdX2UKGgGaAloD0MI9KljldIjM0CUhpRSlGgVS/9oFkdAhYKqrilzl3V9lChoBmgJaA9DCKJ6a2Cr6VZAlIaUUpRoFU3oA2gWR0CFg0JIlMRIdX2UKGgGaAloD0MIXaW762xaXUCUhpRSlGgVTegDaBZHQIWlgTwlSjx1fZQoaAZoCWgPQwg5miMrv/JlQJSGlFKUaBVN6ANoFkdAha5RaPjn3nV9lChoBmgJaA9DCDGZKhgVsmBAlIaUUpRoFU3oA2gWR0CFsFTpgTh6dX2UKGgGaAloD0MISREZVvHaU0CUhpRSlGgVTegDaBZHQIWxEb1h9b51fZQoaAZoCWgPQwgLDFndasFhQJSGlFKUaBVN6ANoFkdAhcdUBwMpgHV9lChoBmgJaA9DCL4uw386y2FAlIaUUpRoFU3oA2gWR0CF/JFXq7iAdX2UKGgGaAloD0MIMKAX7lwoXUCUhpRSlGgVTegDaBZHQIX/fHmzSkV1fZQoaAZoCWgPQwj/0MyTazlfQJSGlFKUaBVN6ANoFkdAhgLbgsK9f3V9lChoBmgJaA9DCOkMjLwsBGJAlIaUUpRoFU3oA2gWR0CGC0lsP8Q7dX2UKGgGaAloD0MIN6W8VkJrWUCUhpRSlGgVTegDaBZHQIYO9LrX18N1fZQoaAZoCWgPQwis5jki30ZhwJSGlFKUaBVNswFoFkdAhhIkDyOJcnV9lChoBmgJaA9DCJQWLquwMGFAlIaUUpRoFU3oA2gWR0CGHMHMUypJdX2UKGgGaAloD0MIyy2thsRpWECUhpRSlGgVTegDaBZHQIYgtzdUKiR1fZQoaAZoCWgPQwg0hGOWPdBhQJSGlFKUaBVN6ANoFkdAhiWQxN7BwnV9lChoBmgJaA9DCMhBCTNt911AlIaUUpRoFU3oA2gWR0CGKDrGBFuvdX2UKGgGaAloD0MIcJnTZTFRR0CUhpRSlGgVTegDaBZHQIYrp/smfGx1fZQoaAZoCWgPQwgN4C2QIHJgQJSGlFKUaBVN6ANoFkdAhiwtXPqs2nV9lChoBmgJaA9DCLUV+8vuyRpAlIaUUpRoFU0jAWgWR0CGLf+HaewtdX2UKGgGaAloD0MIxTcUPttoZECUhpRSlGgVTSUCaBZHQIYvHLPldTp1fZQoaAZoCWgPQwjc1EDzOW1ZwJSGlFKUaBVNYwFoFkdAhjDLwWnCO3V9lChoBmgJaA9DCCMyrOKNfBPAlIaUUpRoFUvbaBZHQIY8qQ1aW5Z1fZQoaAZoCWgPQwiAuRYtQFJYQJSGlFKUaBVN6ANoFkdAhkTioKlYU3V9lChoBmgJaA9DCBY0LbEyYFpAlIaUUpRoFU3oA2gWR0CGS64YJmdzdX2UKGgGaAloD0MIOZuOAG4PYECUhpRSlGgVTegDaBZHQIZN5mNBF/h1fZQoaAZoCWgPQwhQUmABTJBfQJSGlFKUaBVN6ANoFkdAhnTTQE6kqXV9lChoBmgJaA9DCFqbxvbap2BAlIaUUpRoFU3oA2gWR0CGomX4TK1YdX2UKGgGaAloD0MI0egOYmcxYUCUhpRSlGgVTegDaBZHQIaltoxpL291fZQoaAZoCWgPQwgGEalplypgQJSGlFKUaBVN6ANoFkdAhrRsTviLl3V9lChoBmgJaA9DCDzAkxYuB2JAlIaUUpRoFU3oA2gWR0CGv+YR/ViGdX2UKGgGaAloD0MI+kUJ+gtsYkCUhpRSlGgVTegDaBZHQIbEO801qFh1fZQoaAZoCWgPQwgAOPbsuXg7QJSGlFKUaBVN6ANoFkdAhsnw1ivxIHV9lChoBmgJaA9DCGsotRfRCmFAlIaUUpRoFU3oA2gWR0CG0M0rsjVydX2UKGgGaAloD0MIoKUr2EYOSUCUhpRSlGgVTegDaBZHQIbRaeXiR4h1fZQoaAZoCWgPQwjNdoU+2H1iQJSGlFKUaBVN6ANoFkdAhtNrBCUornV9lChoBmgJaA9DCGztfaoKYF1AlIaUUpRoFU3oA2gWR0CG1K6p5u63dX2UKGgGaAloD0MIls0cktohYUCUhpRSlGgVTegDaBZHQIbWk+JP69F1fZQoaAZoCWgPQwgddXRcjcQqwJSGlFKUaBVL22gWR0CG28Myad+YdX2UKGgGaAloD0MInx1wXTETEsCUhpRSlGgVS/VoFkdAhuMrOiWVvHV9lChoBmgJaA9DCAEW+fVD1lxAlIaUUpRoFU3oA2gWR0CG40pjtoi+dX2UKGgGaAloD0MI5gMCncljY0CUhpRSlGgVTegDaBZHQIbqrE9+w1R1fZQoaAZoCWgPQwg0ETY8vUohwJSGlFKUaBVL+2gWR0CG7KqBmPHUdX2UKGgGaAloD0MIUPutnaggZkCUhpRSlGgVTegDaBZHQIbw6ckMTex1fZQoaAZoCWgPQwj8xAH0+8xbQJSGlFKUaBVN6ANoFkdAhvLdTHbRGHV9lChoBmgJaA9DCPeTMT7MfEfAlIaUUpRoFU0dAWgWR0CG+cuZkTYedX2UKGgGaAloD0MIOWOYEzRlZ0CUhpRSlGgVTegDaBZHQIcRqi48U211fZQoaAZoCWgPQwg9D+7O2hdbQJSGlFKUaBVN6ANoFkdAhxRm+Cbtq3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2c948cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2c948cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2c948cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2c948ce50>", "_build": "<function ActorCriticPolicy._build at 0x7fe2c948cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2c948cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2c9491040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2c94910d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2c9491160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2c94911f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2c9491280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe2c948a450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672049287207080409, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOqAD7p8Lo+lZwuvnHFo76zXyI9PrjfvAAAAAAAAAAAIGoPPmbliz/V+fs+rxvjvs74ST5I06U+AAAAAAAAAAAAnkW8gT2YvK0UEb3ZPwE6+0kEPmZrzboAAIA/AACAPxozHb1edrY/W2vZvgQzDb0aqCU9pxODPQAAAAAAAAAATX0/vXv2nbrudh41RL0iLxInQbo6elO0AACAPwAAgD+NO18+qfKqP385ID+trOq+suuQPo2zkj4AAAAAAAAAAJrtDT22ykE9NgdBvsFjZ75K/AQ9dCCzPQAAAAAAAAAAmuHYPCzVvD+eWsA+b2KoPhAv6rxbh1+9AAAAAAAAAACau1M9QLurP3E4Nj9TBQW/XXCdvI5qgj0AAAAAAAAAAJrm+LwtlKY/Tmd6vn155r7tLrW8yAivvQAAAAAAAAAAszvDPTikYD+W54M9Lk2tvt3PnT31Cne8AAAAAAAAAAANloO9tmokvDBBgbupU7E8WzyhPdMGkb0AAIA/AACAP2Yr6zxmNUg/UmAqPWRXm77FG0w8o7f3PQAAAAAAAAAAADDhulIOoruEayU7/tyXPBQW3Txk6YC9AACAPwAAgD8AZqC9XLN5uoaqGrkPew+08p1aOg3LNDgAAIA/AACAP5p5lDpcS0i6jiKXPTqwTb5CbSM9Wy4qPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9inHZDEqcECUhpRSlIwBbJRNJAGMAXSUR0CSWXJ6Y3NtdX2UKGgGaAloD0MIUWnEzP4fckCUhpRSlGgVTQ8BaBZHQJJZpfrrxAl1fZQoaAZoCWgPQwhseHqlrAdvQJSGlFKUaBVNEgFoFkdAklpDNUwSJ3V9lChoBmgJaA9DCMx+3enOm05AlIaUUpRoFUvSaBZHQJJaix4Y77t1fZQoaAZoCWgPQwgrUIvBAzZxQJSGlFKUaBVNDgFoFkdAklqTEBKcu3V9lChoBmgJaA9DCOHQWzy8kUBAlIaUUpRoFUvFaBZHQJJbDRKHwgF1fZQoaAZoCWgPQwhgkzXqISlvQJSGlFKUaBVNHgFoFkdAkltfyXlbNnV9lChoBmgJaA9DCBcQWg/fDnJAlIaUUpRoFU1VAWgWR0CSW8Ev0yxidX2UKGgGaAloD0MIUN8yp0v/cECUhpRSlGgVTRcBaBZHQJJcAaaTfSB1fZQoaAZoCWgPQwjF/x1RYelwQJSGlFKUaBVNNwFoFkdAklxwJb+tKnV9lChoBmgJaA9DCDE/NzTlA3BAlIaUUpRoFU00AWgWR0CSXK4iX6ZZdX2UKGgGaAloD0MIisxc4PIHcUCUhpRSlGgVTSwBaBZHQJJc1Pj4pMJ1fZQoaAZoCWgPQwh0Jm2qrtpyQJSGlFKUaBVNLAFoFkdAkl1FKsdT53V9lChoBmgJaA9DCHtntFVJxnBAlIaUUpRoFU0tAWgWR0CSXf5tFa0QdX2UKGgGaAloD0MI7Bfshm1RR0CUhpRSlGgVS9xoFkdAkl/PMfRu0nV9lChoBmgJaA9DCF3iyAMRxnJAlIaUUpRoFU0LAWgWR0CSYBW07bL2dX2UKGgGaAloD0MIpBgg0cT2cECUhpRSlGgVS+1oFkdAkmCVXaJyhnV9lChoBmgJaA9DCKIJFLGIenBAlIaUUpRoFU0lAWgWR0CSYQcL0BfbdX2UKGgGaAloD0MIRztu+F0fcECUhpRSlGgVTR0BaBZHQJJhIGpuMuR1fZQoaAZoCWgPQwh6NUBpaLxyQJSGlFKUaBVNDgFoFkdAkmGIvWYnfHV9lChoBmgJaA9DCHzUX69whnFAlIaUUpRoFU0LAWgWR0CSYe4NqgyudX2UKGgGaAloD0MI5bM8D26bb0CUhpRSlGgVTS4BaBZHQJJjUD6nBLx1fZQoaAZoCWgPQwhgdk8eVuNxQJSGlFKUaBVL+GgWR0CSY3+lj3EidX2UKGgGaAloD0MIaEEo76PVcECUhpRSlGgVTSoBaBZHQJJjnRu0kW11fZQoaAZoCWgPQwi46c9+5GVwQJSGlFKUaBVNLwFoFkdAkmSUH2RJVnV9lChoBmgJaA9DCFIP0ejOC3NAlIaUUpRoFU06AWgWR0CSZTt0mtyQdX2UKGgGaAloD0MInwCKkSWJb0CUhpRSlGgVTVkBaBZHQJJlTXL/0d11fZQoaAZoCWgPQwh8DixHSCVrQJSGlFKUaBVNzgFoFkdAkmYtS/CZW3V9lChoBmgJaA9DCFG+oIVE3HBAlIaUUpRoFU1WAWgWR0CSZudE9dNWdX2UKGgGaAloD0MID9B9ObPFb0CUhpRSlGgVTTYBaBZHQJJm5ev6j351fZQoaAZoCWgPQwhgAOFDCQ9yQJSGlFKUaBVNDgFoFkdAkmemRFI/aHV9lChoBmgJaA9DCM1XyceuPXBAlIaUUpRoFU0OAWgWR0CSZ+muDBdldX2UKGgGaAloD0MIUyEeiReGbkCUhpRSlGgVTQQBaBZHQJJpHIS13MZ1fZQoaAZoCWgPQwj/69y0WXdwQJSGlFKUaBVNKQFoFkdAkmk0lJHy3HV9lChoBmgJaA9DCCTQYFNnCW5AlIaUUpRoFU0ZAWgWR0CSaUgdwNsndX2UKGgGaAloD0MI8MLWbOUqckCUhpRSlGgVTQUBaBZHQJJpgXN1QqJ1fZQoaAZoCWgPQwgJM23/ygogQJSGlFKUaBVL12gWR0CSabcSGrS3dX2UKGgGaAloD0MITN2VXTDLUUCUhpRSlGgVS8JoFkdAkmoHW8RL9XV9lChoBmgJaA9DCLjIPV3daUtAlIaUUpRoFUv0aBZHQJJqNaGHpKV1fZQoaAZoCWgPQwgcI9kjVKFvQJSGlFKUaBVNSwFoFkdAkmpn0kGA1HV9lChoBmgJaA9DCL6FdePdqG9AlIaUUpRoFU0XAWgWR0CSgdNZNfw7dX2UKGgGaAloD0MIcLGiBtNbcECUhpRSlGgVTRIBaBZHQJKDQLgGbCt1fZQoaAZoCWgPQwjUm1HzFfJwQJSGlFKUaBVNBgFoFkdAkoPG5QP7N3V9lChoBmgJaA9DCGd79Ia7QHFAlIaUUpRoFU04AWgWR0CShElA/s3RdX2UKGgGaAloD0MIFva0wx8ecECUhpRSlGgVS/JoFkdAkoSz6JqIrXV9lChoBmgJaA9DCGhcOBCSKm5AlIaUUpRoFUvyaBZHQJKE85vLowF1fZQoaAZoCWgPQwj1oKAUrXNTQJSGlFKUaBVLqWgWR0CShT/SYw7DdX2UKGgGaAloD0MI845TdCQbOUCUhpRSlGgVS8JoFkdAkoW5AQg9vHV9lChoBmgJaA9DCK4NFeO893JAlIaUUpRoFU07AWgWR0CSheEE1VHXdX2UKGgGaAloD0MILgH4p9R9cUCUhpRSlGgVTTwBaBZHQJKF6x7iQ1d1fZQoaAZoCWgPQwjc14FzhmRxQJSGlFKUaBVL/2gWR0CShm4Glhw3dX2UKGgGaAloD0MIWoC21WyKcUCUhpRSlGgVTRUBaBZHQJKHBqFh5Pd1fZQoaAZoCWgPQwjwFHKlnjZvQJSGlFKUaBVNDQFoFkdAkodHQMQVbnV9lChoBmgJaA9DCNxLGqP1w21AlIaUUpRoFU0jAWgWR0CSh5HqNZNgdX2UKGgGaAloD0MIN6lorL1WcUCUhpRSlGgVTUoBaBZHQJKIIF5fMOh1fZQoaAZoCWgPQwj6XkNw3DBtQJSGlFKUaBVNMAFoFkdAkoi/Nqxkd3V9lChoBmgJaA9DCNO+ub86bXJAlIaUUpRoFU0cAWgWR0CSiQWIoE0SdX2UKGgGaAloD0MI275H/XVdb0CUhpRSlGgVS/JoFkdAkolTx0+1SnV9lChoBmgJaA9DCAlOfSA5DXJAlIaUUpRoFU0GAWgWR0CSijPSDyvtdX2UKGgGaAloD0MIErwhjQrNUUCUhpRSlGgVS/JoFkdAkoqQoXsPa3V9lChoBmgJaA9DCDS5GAPrpXBAlIaUUpRoFU0FAWgWR0CSiqZ62OQydX2UKGgGaAloD0MIlUiil1FOckCUhpRSlGgVS/NoFkdAkosU6YE4enV9lChoBmgJaA9DCGgIxyw7n3BAlIaUUpRoFU0gAWgWR0CSi/JMxoIwdX2UKGgGaAloD0MIEcR5OIHtSkCUhpRSlGgVS+5oFkdAkowiH/Lkj3V9lChoBmgJaA9DCGiu00hLETVAlIaUUpRoFUvRaBZHQJKMSDbrTph1fZQoaAZoCWgPQwiQh767FexvQJSGlFKUaBVNGQFoFkdAkoy0VvddmnV9lChoBmgJaA9DCE4mbhUEM3NAlIaUUpRoFU0qAWgWR0CSjPWq94/vdX2UKGgGaAloD0MI2e2zykzfTUCUhpRSlGgVS8FoFkdAko2HEdeY2XV9lChoBmgJaA9DCH5VLlQ+D3BAlIaUUpRoFUv9aBZHQJKNygi/wiJ1fZQoaAZoCWgPQwg+JefEXgBxQJSGlFKUaBVNTgFoFkdAko4Uwvg3tXV9lChoBmgJaA9DCOcb0T3rDkVAlIaUUpRoFUvJaBZHQJKOZ+iJwbV1fZQoaAZoCWgPQwhSD9HozgFwQJSGlFKUaBVNLAFoFkdAko5nHR1HOXV9lChoBmgJaA9DCK2+uipQ8G5AlIaUUpRoFU0VAWgWR0CSjvGlANXpdX2UKGgGaAloD0MIXeDyWDPucUCUhpRSlGgVTQYBaBZHQJKPc7jkuHx1fZQoaAZoCWgPQwiI9rGC3/5LQJSGlFKUaBVL3GgWR0CSkIFi8WbgdX2UKGgGaAloD0MIr5l8s42McECUhpRSlGgVTRoBaBZHQJKRPHKfWc11fZQoaAZoCWgPQwibOSS1kAhzQJSGlFKUaBVNDQFoFkdAkpFCTUy57XV9lChoBmgJaA9DCOBnXDgQKi1AlIaUUpRoFUvMaBZHQJKRv92ovSN1fZQoaAZoCWgPQwhnmUUo9iBxQJSGlFKUaBVNNgFoFkdAkpJmxptaZHV9lChoBmgJaA9DCFHYRdEDCmxAlIaUUpRoFU0mAWgWR0CSk3u/1xsEdX2UKGgGaAloD0MIrmcIx6ysbUCUhpRSlGgVTSkBaBZHQJKTzJKaodd1fZQoaAZoCWgPQwhNTBdiNcBxQJSGlFKUaBVNJAFoFkdAkpPTRplBhXV9lChoBmgJaA9DCHAofLYO5EVAlIaUUpRoFUvraBZHQJKUcdU83dd1fZQoaAZoCWgPQwiKdD+nICdyQJSGlFKUaBVNMQFoFkdAkpTehPCVKXV9lChoBmgJaA9DCFuVRPaBA3NAlIaUUpRoFU0OAWgWR0CSlQuFHrhSdX2UKGgGaAloD0MICg+aXfcUc0CUhpRSlGgVTQwBaBZHQJKVVEhJRO11fZQoaAZoCWgPQwjfGW1VEhZRQJSGlFKUaBVLvGgWR0CSlaPOY6XCdX2UKGgGaAloD0MI0PBmDd4pc0CUhpRSlGgVTTIBaBZHQJKVrsMRYih1fZQoaAZoCWgPQwjR6Xk3lhlxQJSGlFKUaBVNQQFoFkdAkpXPQ0GeMHV9lChoBmgJaA9DCFOSdTh6znBAlIaUUpRoFUvzaBZHQJKV4Svkill1fZQoaAZoCWgPQwjP2Jds/OtwQJSGlFKUaBVNFgFoFkdAkpYa1stTUHV9lChoBmgJaA9DCCRjtfn/+nFAlIaUUpRoFUv7aBZHQJKXkJY1YQt1fZQoaAZoCWgPQwiL/zuiQiNvQJSGlFKUaBVNFQFoFkdAkpi/m1YyPHV9lChoBmgJaA9DCNKNsKiIB29AlIaUUpRoFU04AWgWR0CSmSUGVzIWdX2UKGgGaAloD0MIn48y4oL7bkCUhpRSlGgVTQsBaBZHQJKaIgHNX5p1fZQoaAZoCWgPQwgqrFRQkQdwQJSGlFKUaBVNNgFoFkdAkppVEuxrz3V9lChoBmgJaA9DCKxY/KawgklAlIaUUpRoFUvNaBZHQJKavpV0cOt1fZQoaAZoCWgPQwgi/8wgPuRIQJSGlFKUaBVL3mgWR0CSmtfhddE9dX2UKGgGaAloD0MIrrZif5lvcECUhpRSlGgVTRkBaBZHQJKa5klNUOx1fZQoaAZoCWgPQwgGoFG6tKhyQJSGlFKUaBVNAQFoFkdAkprmwu/UOXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8a89dbeea9a714af57e8428c4940ace89635cc536caf6948f008c3abb27fa0b
|
3 |
+
size 147182
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2c948cca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2c948cd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2c948cdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2c948ce50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe2c948cee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe2c948cf70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2c9491040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe2c94910d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2c9491160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2c94911f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2c9491280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe2c948a450>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672049287207080409,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANOqAD7p8Lo+lZwuvnHFo76zXyI9PrjfvAAAAAAAAAAAIGoPPmbliz/V+fs+rxvjvs74ST5I06U+AAAAAAAAAAAAnkW8gT2YvK0UEb3ZPwE6+0kEPmZrzboAAIA/AACAPxozHb1edrY/W2vZvgQzDb0aqCU9pxODPQAAAAAAAAAATX0/vXv2nbrudh41RL0iLxInQbo6elO0AACAPwAAgD+NO18+qfKqP385ID+trOq+suuQPo2zkj4AAAAAAAAAAJrtDT22ykE9NgdBvsFjZ75K/AQ9dCCzPQAAAAAAAAAAmuHYPCzVvD+eWsA+b2KoPhAv6rxbh1+9AAAAAAAAAACau1M9QLurP3E4Nj9TBQW/XXCdvI5qgj0AAAAAAAAAAJrm+LwtlKY/Tmd6vn155r7tLrW8yAivvQAAAAAAAAAAszvDPTikYD+W54M9Lk2tvt3PnT31Cne8AAAAAAAAAAANloO9tmokvDBBgbupU7E8WzyhPdMGkb0AAIA/AACAP2Yr6zxmNUg/UmAqPWRXm77FG0w8o7f3PQAAAAAAAAAAADDhulIOoruEayU7/tyXPBQW3Txk6YC9AACAPwAAgD8AZqC9XLN5uoaqGrkPew+08p1aOg3LNDgAAIA/AACAP5p5lDpcS0i6jiKXPTqwTb5CbSM9Wy4qPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9inHZDEqcECUhpRSlIwBbJRNJAGMAXSUR0CSWXJ6Y3NtdX2UKGgGaAloD0MIUWnEzP4fckCUhpRSlGgVTQ8BaBZHQJJZpfrrxAl1fZQoaAZoCWgPQwhseHqlrAdvQJSGlFKUaBVNEgFoFkdAklpDNUwSJ3V9lChoBmgJaA9DCMx+3enOm05AlIaUUpRoFUvSaBZHQJJaix4Y77t1fZQoaAZoCWgPQwgrUIvBAzZxQJSGlFKUaBVNDgFoFkdAklqTEBKcu3V9lChoBmgJaA9DCOHQWzy8kUBAlIaUUpRoFUvFaBZHQJJbDRKHwgF1fZQoaAZoCWgPQwhgkzXqISlvQJSGlFKUaBVNHgFoFkdAkltfyXlbNnV9lChoBmgJaA9DCBcQWg/fDnJAlIaUUpRoFU1VAWgWR0CSW8Ev0yxidX2UKGgGaAloD0MIUN8yp0v/cECUhpRSlGgVTRcBaBZHQJJcAaaTfSB1fZQoaAZoCWgPQwjF/x1RYelwQJSGlFKUaBVNNwFoFkdAklxwJb+tKnV9lChoBmgJaA9DCDE/NzTlA3BAlIaUUpRoFU00AWgWR0CSXK4iX6ZZdX2UKGgGaAloD0MIisxc4PIHcUCUhpRSlGgVTSwBaBZHQJJc1Pj4pMJ1fZQoaAZoCWgPQwh0Jm2qrtpyQJSGlFKUaBVNLAFoFkdAkl1FKsdT53V9lChoBmgJaA9DCHtntFVJxnBAlIaUUpRoFU0tAWgWR0CSXf5tFa0QdX2UKGgGaAloD0MI7Bfshm1RR0CUhpRSlGgVS9xoFkdAkl/PMfRu0nV9lChoBmgJaA9DCF3iyAMRxnJAlIaUUpRoFU0LAWgWR0CSYBW07bL2dX2UKGgGaAloD0MIpBgg0cT2cECUhpRSlGgVS+1oFkdAkmCVXaJyhnV9lChoBmgJaA9DCKIJFLGIenBAlIaUUpRoFU0lAWgWR0CSYQcL0BfbdX2UKGgGaAloD0MIRztu+F0fcECUhpRSlGgVTR0BaBZHQJJhIGpuMuR1fZQoaAZoCWgPQwh6NUBpaLxyQJSGlFKUaBVNDgFoFkdAkmGIvWYnfHV9lChoBmgJaA9DCHzUX69whnFAlIaUUpRoFU0LAWgWR0CSYe4NqgyudX2UKGgGaAloD0MI5bM8D26bb0CUhpRSlGgVTS4BaBZHQJJjUD6nBLx1fZQoaAZoCWgPQwhgdk8eVuNxQJSGlFKUaBVL+GgWR0CSY3+lj3EidX2UKGgGaAloD0MIaEEo76PVcECUhpRSlGgVTSoBaBZHQJJjnRu0kW11fZQoaAZoCWgPQwi46c9+5GVwQJSGlFKUaBVNLwFoFkdAkmSUH2RJVnV9lChoBmgJaA9DCFIP0ejOC3NAlIaUUpRoFU06AWgWR0CSZTt0mtyQdX2UKGgGaAloD0MInwCKkSWJb0CUhpRSlGgVTVkBaBZHQJJlTXL/0d11fZQoaAZoCWgPQwh8DixHSCVrQJSGlFKUaBVNzgFoFkdAkmYtS/CZW3V9lChoBmgJaA9DCFG+oIVE3HBAlIaUUpRoFU1WAWgWR0CSZudE9dNWdX2UKGgGaAloD0MID9B9ObPFb0CUhpRSlGgVTTYBaBZHQJJm5ev6j351fZQoaAZoCWgPQwhgAOFDCQ9yQJSGlFKUaBVNDgFoFkdAkmemRFI/aHV9lChoBmgJaA9DCM1XyceuPXBAlIaUUpRoFU0OAWgWR0CSZ+muDBdldX2UKGgGaAloD0MIUyEeiReGbkCUhpRSlGgVTQQBaBZHQJJpHIS13MZ1fZQoaAZoCWgPQwj/69y0WXdwQJSGlFKUaBVNKQFoFkdAkmk0lJHy3HV9lChoBmgJaA9DCCTQYFNnCW5AlIaUUpRoFU0ZAWgWR0CSaUgdwNsndX2UKGgGaAloD0MI8MLWbOUqckCUhpRSlGgVTQUBaBZHQJJpgXN1QqJ1fZQoaAZoCWgPQwgJM23/ygogQJSGlFKUaBVL12gWR0CSabcSGrS3dX2UKGgGaAloD0MITN2VXTDLUUCUhpRSlGgVS8JoFkdAkmoHW8RL9XV9lChoBmgJaA9DCLjIPV3daUtAlIaUUpRoFUv0aBZHQJJqNaGHpKV1fZQoaAZoCWgPQwgcI9kjVKFvQJSGlFKUaBVNSwFoFkdAkmpn0kGA1HV9lChoBmgJaA9DCL6FdePdqG9AlIaUUpRoFU0XAWgWR0CSgdNZNfw7dX2UKGgGaAloD0MIcLGiBtNbcECUhpRSlGgVTRIBaBZHQJKDQLgGbCt1fZQoaAZoCWgPQwjUm1HzFfJwQJSGlFKUaBVNBgFoFkdAkoPG5QP7N3V9lChoBmgJaA9DCGd79Ia7QHFAlIaUUpRoFU04AWgWR0CShElA/s3RdX2UKGgGaAloD0MIFva0wx8ecECUhpRSlGgVS/JoFkdAkoSz6JqIrXV9lChoBmgJaA9DCGhcOBCSKm5AlIaUUpRoFUvyaBZHQJKE85vLowF1fZQoaAZoCWgPQwj1oKAUrXNTQJSGlFKUaBVLqWgWR0CShT/SYw7DdX2UKGgGaAloD0MI845TdCQbOUCUhpRSlGgVS8JoFkdAkoW5AQg9vHV9lChoBmgJaA9DCK4NFeO893JAlIaUUpRoFU07AWgWR0CSheEE1VHXdX2UKGgGaAloD0MILgH4p9R9cUCUhpRSlGgVTTwBaBZHQJKF6x7iQ1d1fZQoaAZoCWgPQwjc14FzhmRxQJSGlFKUaBVL/2gWR0CShm4Glhw3dX2UKGgGaAloD0MIWoC21WyKcUCUhpRSlGgVTRUBaBZHQJKHBqFh5Pd1fZQoaAZoCWgPQwjwFHKlnjZvQJSGlFKUaBVNDQFoFkdAkodHQMQVbnV9lChoBmgJaA9DCNxLGqP1w21AlIaUUpRoFU0jAWgWR0CSh5HqNZNgdX2UKGgGaAloD0MIN6lorL1WcUCUhpRSlGgVTUoBaBZHQJKIIF5fMOh1fZQoaAZoCWgPQwj6XkNw3DBtQJSGlFKUaBVNMAFoFkdAkoi/Nqxkd3V9lChoBmgJaA9DCNO+ub86bXJAlIaUUpRoFU0cAWgWR0CSiQWIoE0SdX2UKGgGaAloD0MI275H/XVdb0CUhpRSlGgVS/JoFkdAkolTx0+1SnV9lChoBmgJaA9DCAlOfSA5DXJAlIaUUpRoFU0GAWgWR0CSijPSDyvtdX2UKGgGaAloD0MIErwhjQrNUUCUhpRSlGgVS/JoFkdAkoqQoXsPa3V9lChoBmgJaA9DCDS5GAPrpXBAlIaUUpRoFU0FAWgWR0CSiqZ62OQydX2UKGgGaAloD0MIlUiil1FOckCUhpRSlGgVS/NoFkdAkosU6YE4enV9lChoBmgJaA9DCGgIxyw7n3BAlIaUUpRoFU0gAWgWR0CSi/JMxoIwdX2UKGgGaAloD0MIEcR5OIHtSkCUhpRSlGgVS+5oFkdAkowiH/Lkj3V9lChoBmgJaA9DCGiu00hLETVAlIaUUpRoFUvRaBZHQJKMSDbrTph1fZQoaAZoCWgPQwiQh767FexvQJSGlFKUaBVNGQFoFkdAkoy0VvddmnV9lChoBmgJaA9DCE4mbhUEM3NAlIaUUpRoFU0qAWgWR0CSjPWq94/vdX2UKGgGaAloD0MI2e2zykzfTUCUhpRSlGgVS8FoFkdAko2HEdeY2XV9lChoBmgJaA9DCH5VLlQ+D3BAlIaUUpRoFUv9aBZHQJKNygi/wiJ1fZQoaAZoCWgPQwg+JefEXgBxQJSGlFKUaBVNTgFoFkdAko4Uwvg3tXV9lChoBmgJaA9DCOcb0T3rDkVAlIaUUpRoFUvJaBZHQJKOZ+iJwbV1fZQoaAZoCWgPQwhSD9HozgFwQJSGlFKUaBVNLAFoFkdAko5nHR1HOXV9lChoBmgJaA9DCK2+uipQ8G5AlIaUUpRoFU0VAWgWR0CSjvGlANXpdX2UKGgGaAloD0MIXeDyWDPucUCUhpRSlGgVTQYBaBZHQJKPc7jkuHx1fZQoaAZoCWgPQwiI9rGC3/5LQJSGlFKUaBVL3GgWR0CSkIFi8WbgdX2UKGgGaAloD0MIr5l8s42McECUhpRSlGgVTRoBaBZHQJKRPHKfWc11fZQoaAZoCWgPQwibOSS1kAhzQJSGlFKUaBVNDQFoFkdAkpFCTUy57XV9lChoBmgJaA9DCOBnXDgQKi1AlIaUUpRoFUvMaBZHQJKRv92ovSN1fZQoaAZoCWgPQwhnmUUo9iBxQJSGlFKUaBVNNgFoFkdAkpJmxptaZHV9lChoBmgJaA9DCFHYRdEDCmxAlIaUUpRoFU0mAWgWR0CSk3u/1xsEdX2UKGgGaAloD0MIrmcIx6ysbUCUhpRSlGgVTSkBaBZHQJKTzJKaodd1fZQoaAZoCWgPQwhNTBdiNcBxQJSGlFKUaBVNJAFoFkdAkpPTRplBhXV9lChoBmgJaA9DCHAofLYO5EVAlIaUUpRoFUvraBZHQJKUcdU83dd1fZQoaAZoCWgPQwiKdD+nICdyQJSGlFKUaBVNMQFoFkdAkpTehPCVKXV9lChoBmgJaA9DCFuVRPaBA3NAlIaUUpRoFU0OAWgWR0CSlQuFHrhSdX2UKGgGaAloD0MICg+aXfcUc0CUhpRSlGgVTQwBaBZHQJKVVEhJRO11fZQoaAZoCWgPQwjfGW1VEhZRQJSGlFKUaBVLvGgWR0CSlaPOY6XCdX2UKGgGaAloD0MI0PBmDd4pc0CUhpRSlGgVTTIBaBZHQJKVrsMRYih1fZQoaAZoCWgPQwjR6Xk3lhlxQJSGlFKUaBVNQQFoFkdAkpXPQ0GeMHV9lChoBmgJaA9DCFOSdTh6znBAlIaUUpRoFUvzaBZHQJKV4Svkill1fZQoaAZoCWgPQwjP2Jds/OtwQJSGlFKUaBVNFgFoFkdAkpYa1stTUHV9lChoBmgJaA9DCCRjtfn/+nFAlIaUUpRoFUv7aBZHQJKXkJY1YQt1fZQoaAZoCWgPQwiL/zuiQiNvQJSGlFKUaBVNFQFoFkdAkpi/m1YyPHV9lChoBmgJaA9DCNKNsKiIB29AlIaUUpRoFU04AWgWR0CSmSUGVzIWdX2UKGgGaAloD0MIn48y4oL7bkCUhpRSlGgVTQsBaBZHQJKaIgHNX5p1fZQoaAZoCWgPQwgqrFRQkQdwQJSGlFKUaBVNNgFoFkdAkppVEuxrz3V9lChoBmgJaA9DCKxY/KawgklAlIaUUpRoFUvNaBZHQJKavpV0cOt1fZQoaAZoCWgPQwgi/8wgPuRIQJSGlFKUaBVL3mgWR0CSmtfhddE9dX2UKGgGaAloD0MIrrZif5lvcECUhpRSlGgVTRkBaBZHQJKa5klNUOx1fZQoaAZoCWgPQwgGoFG6tKhyQJSGlFKUaBVNAQFoFkdAkprmwu/UOXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce83dbd7d11f2ae1dc9b6debbc48d1ba90abba39f81b730b1ede0c31ce31ec6
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de25b714a3e09c0f509700f3a7b287966893fa74e541b0fb40dfbfaed6333740
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 236.84897409538712, "std_reward": 63.44145430076112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-26T10:31:20.975644"}
|