SaCHi_ASR
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the sawadogosalif/MooreFRCollectionsAudios dataset. It achieves the following results on the evaluation set:
- Loss: 0.1507
- Wer: 10.9659
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3863 | 0.4657 | 400 | 0.3211 | 23.1126 |
0.2748 | 0.9313 | 800 | 0.2645 | 19.4439 |
0.2308 | 1.3970 | 1200 | 0.2361 | 20.9174 |
0.212 | 1.8626 | 1600 | 0.2167 | 17.2891 |
0.1232 | 2.3283 | 2000 | 0.2039 | 13.1813 |
0.137 | 2.7939 | 2400 | 0.1852 | 17.8341 |
0.0894 | 3.2596 | 2800 | 0.1734 | 11.8642 |
0.0883 | 3.7253 | 3200 | 0.1615 | 10.6732 |
0.0525 | 4.1909 | 3600 | 0.1556 | 11.1930 |
0.0602 | 4.6566 | 4000 | 0.1507 | 10.9659 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 65
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for sawadogosalif/SaChi-ASR
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo
Dataset used to train sawadogosalif/SaChi-ASR
Space using sawadogosalif/SaChi-ASR 1
Evaluation results
- Wer on sawadogosalif/MooreFRCollectionsAudiosself-reported10.966