metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- whisper-event
- generated_from_trainer
datasets:
- OUTCOMESAI/medical_speech_corpus
metrics:
- wer
model-index:
- name: Whisper Large V3 Medical
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: OUTCOMESAI/medical_speech_corpus en
type: OUTCOMESAI/medical_speech_corpus
metrics:
- name: Wer
type: wer
value: 3.2635854592980795
Whisper Large V3 Medical
This model is a fine-tuned version of openai/whisper-large-v3 on the OUTCOMESAI/medical_speech_corpus en dataset. It achieves the following results on the evaluation set:
- Loss: 0.1453
- Wer: 3.2636
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.2439 | 0.1530 | 200 | 0.2935 | 4.5078 |
3.3374 | 0.3060 | 400 | 0.2734 | 4.6961 |
3.0833 | 0.4591 | 600 | 0.2673 | 4.2733 |
1.8243 | 0.6121 | 800 | 0.2681 | 4.4373 |
1.1288 | 0.7651 | 1000 | 0.2549 | 4.2771 |
0.8199 | 0.9181 | 1200 | 0.2412 | 4.2041 |
0.681 | 1.0712 | 1400 | 0.2311 | 4.1054 |
0.5798 | 1.2242 | 1600 | 0.2192 | 4.0093 |
0.5233 | 1.3772 | 1800 | 0.2072 | 3.8927 |
0.463 | 1.5302 | 2000 | 0.1992 | 3.8197 |
0.428 | 1.6832 | 2200 | 0.1951 | 3.7748 |
0.3944 | 1.8363 | 2400 | 0.1866 | 3.6775 |
0.3682 | 1.9893 | 2600 | 0.1792 | 3.6044 |
0.3543 | 2.1423 | 2800 | 0.1725 | 3.5301 |
0.3368 | 2.2953 | 3000 | 0.1714 | 3.4904 |
0.3136 | 2.4484 | 3200 | 0.1648 | 3.4571 |
0.3121 | 2.6014 | 3400 | 0.1604 | 3.4238 |
0.2959 | 2.7544 | 3600 | 0.1561 | 3.3956 |
0.2912 | 2.9074 | 3800 | 0.1538 | 3.3738 |
0.2767 | 3.0604 | 4000 | 0.1511 | 3.3456 |
0.2848 | 3.2135 | 4200 | 0.1487 | 3.3200 |
0.274 | 3.3665 | 4400 | 0.1475 | 3.2841 |
0.2694 | 3.5195 | 4600 | 0.1464 | 3.2828 |
0.2731 | 3.6725 | 4800 | 0.1455 | 3.2687 |
0.2677 | 3.8256 | 5000 | 0.1453 | 3.2636 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 3.1.1.dev0
- Tokenizers 0.21.0