gpt2-finetuned-justification-v3

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2415
  • Rouge1: 30.8957
  • Rouge2: 13.5597
  • Rougel: 22.4384
  • Rougelsum: 28.2668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 338 0.1980 30.0775 13.8145 22.3863 28.0341
0.226 2.0 676 0.1972 28.9676 13.7684 21.8084 26.6768
0.1594 3.0 1014 0.2007 29.8576 13.3727 22.1581 27.5726
0.1594 4.0 1352 0.2071 32.2090 13.7848 22.8787 29.0171
0.1259 5.0 1690 0.2146 28.5240 13.5821 21.4908 26.2550
0.1046 6.0 2028 0.2211 26.1623 13.1641 21.5936 25.0346
0.1046 7.0 2366 0.2294 28.7169 13.4858 21.1068 26.1213
0.0894 8.0 2704 0.2355 30.8957 13.5597 22.4384 28.2668
0.0785 9.0 3042 0.2398 30.8957 13.5597 22.4384 28.2668
0.0785 10.0 3380 0.2415 30.8957 13.5597 22.4384 28.2668

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
301M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.