Uploaded model

  • Developed by: satoyutaka
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

sample of use(python)

from transformers import (

AutoModelForCausalLM,

AutoTokenizer,

BitsAndBytesConfig,

)

モデルのロード

import torch from tqdm import tqdm import json

HF_TOKEN = "Hugging Face Token" #Hugging Face のAPIキーを入力(read)

model_name = "satoyutaka/llm-jp-3-13b-ftELZ-2" #作成したモデル名

量子化パラメータの設定

bnb_config = BitsAndBytesConfig(

load_in_4bit=True,

bnb_4bit_quant_type="nf4",

bnb_4bit_compute_dtype=torch.bfloat16,

bnb_4bit_use_double_quant=False,

)

問題文の読み込み

datasets = []

with open("elyza-tasks-100-TV_0.jsonl", "r") as f: #ファイルを格納したパスに書き換えてください。

item = ""

for line in f:

  line = line.strip()

  item += line

  if item.endswith("}"):

    datasets.append(json.loads(item))

    item = ""

results = []

推論

from tqdm import tqdm

results = []

for dt in tqdm(datasets):

input = dt["input"]

prompt = f"""### 指示\n{input}\n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)

prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

提出ファイルの作成

import re

model_name = re.sub(".*/", "", model_name)

with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:

for result in results:


    json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters


    f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for satoyutaka/llm-jp-3-13b-ftELZ-2

Finetuned
(1118)
this model