Edit model card

SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • Mollel/swahili-n_li-triplet-swh-eng

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka")
# Run inference
sentences = [
    'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
    'mwanamume na mwanamke wenye mikoba',
    'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6832
spearman_cosine 0.6771
pearson_manhattan 0.6892
spearman_manhattan 0.6892
pearson_euclidean 0.6917
spearman_euclidean 0.6917
pearson_dot 0.6418
spearman_dot 0.6286
pearson_max 0.6917
spearman_max 0.6917

Semantic Similarity

Metric Value
pearson_cosine 0.6753
spearman_cosine 0.6731
pearson_manhattan 0.6907
spearman_manhattan 0.6928
pearson_euclidean 0.6934
spearman_euclidean 0.6941
pearson_dot 0.6004
spearman_dot 0.5858
pearson_max 0.6934
spearman_max 0.6941

Semantic Similarity

Metric Value
pearson_cosine 0.6546
spearman_cosine 0.6524
pearson_manhattan 0.6837
spearman_manhattan 0.6797
pearson_euclidean 0.6861
spearman_euclidean 0.6816
pearson_dot 0.5121
spearman_dot 0.4914
pearson_max 0.6861
spearman_max 0.6816

Training Details

Training Dataset

Mollel/swahili-n_li-triplet-swh-eng

  • Dataset: Mollel/swahili-n_li-triplet-swh-eng
  • Size: 1,115,700 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 15.18 tokens
    • max: 80 tokens
    • min: 5 tokens
    • mean: 18.53 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 17.8 tokens
    • max: 53 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika. Mtu yuko nje, juu ya farasi. Mtu yuko kwenye mkahawa, akiagiza omelette.
    Children smiling and waving at camera There are children present The kids are frowning
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

Mollel/swahili-n_li-triplet-swh-eng

  • Dataset: Mollel/swahili-n_li-triplet-swh-eng
  • Size: 13,168 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 26.43 tokens
    • max: 94 tokens
    • min: 5 tokens
    • mean: 13.37 tokens
    • max: 65 tokens
    • min: 5 tokens
    • mean: 14.7 tokens
    • max: 54 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda. Wanawake wawili wanashikilia vifurushi. Wanaume hao wanapigana nje ya duka la vyakula vitamu.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss sts-test-128_spearman_cosine sts-test-256_spearman_cosine sts-test-64_spearman_cosine
0.0115 100 9.6847 - - -
0.0229 200 8.5336 - - -
0.0344 300 7.768 - - -
0.0459 400 7.2049 - - -
0.0574 500 6.9425 - - -
0.0688 600 7.029 - - -
0.0803 700 6.259 - - -
0.0918 800 6.0939 - - -
0.1032 900 5.991 - - -
0.1147 1000 5.39 - - -
0.1262 1100 5.3214 - - -
0.1377 1200 5.1469 - - -
0.1491 1300 4.901 - - -
0.1606 1400 5.2725 - - -
0.1721 1500 5.077 - - -
0.1835 1600 4.8006 - - -
0.1950 1700 4.5318 - - -
0.2065 1800 4.48 - - -
0.2180 1900 4.5752 - - -
0.2294 2000 4.427 - - -
0.2409 2100 4.4021 - - -
0.2524 2200 4.5903 - - -
0.2639 2300 4.4561 - - -
0.2753 2400 4.372 - - -
0.2868 2500 4.2698 - - -
0.2983 2600 4.3954 - - -
0.3097 2700 4.2697 - - -
0.3212 2800 4.125 - - -
0.3327 2900 4.3611 - - -
0.3442 3000 4.2527 - - -
0.3556 3100 4.1892 - - -
0.3671 3200 4.0417 - - -
0.3786 3300 3.9434 - - -
0.3900 3400 3.9797 - - -
0.4015 3500 3.9611 - - -
0.4130 3600 4.04 - - -
0.4245 3700 3.965 - - -
0.4359 3800 3.778 - - -
0.4474 3900 4.0624 - - -
0.4589 4000 3.8972 - - -
0.4703 4100 3.7882 - - -
0.4818 4200 3.8048 - - -
0.4933 4300 3.9253 - - -
0.5048 4400 3.9832 - - -
0.5162 4500 3.6644 - - -
0.5277 4600 3.7353 - - -
0.5392 4700 3.7768 - - -
0.5506 4800 3.796 - - -
0.5621 4900 3.875 - - -
0.5736 5000 3.7856 - - -
0.5851 5100 3.8898 - - -
0.5965 5200 3.6327 - - -
0.6080 5300 3.7727 - - -
0.6195 5400 3.8582 - - -
0.6310 5500 3.729 - - -
0.6424 5600 3.7088 - - -
0.6539 5700 3.8414 - - -
0.6654 5800 3.7624 - - -
0.6768 5900 3.8816 - - -
0.6883 6000 3.7483 - - -
0.6998 6100 3.7759 - - -
0.7113 6200 3.6674 - - -
0.7227 6300 3.6441 - - -
0.7342 6400 3.7779 - - -
0.7457 6500 3.6691 - - -
0.7571 6600 3.7636 - - -
0.7686 6700 3.7424 - - -
0.7801 6800 3.4943 - - -
0.7916 6900 3.5399 - - -
0.8030 7000 3.3658 - - -
0.8145 7100 3.2856 - - -
0.8260 7200 3.3702 - - -
0.8374 7300 3.3121 - - -
0.8489 7400 3.2322 - - -
0.8604 7500 3.1577 - - -
0.8719 7600 3.1873 - - -
0.8833 7700 3.1492 - - -
0.8948 7800 3.2035 - - -
0.9063 7900 3.1607 - - -
0.9177 8000 3.1557 - - -
0.9292 8100 3.0915 - - -
0.9407 8200 3.1335 - - -
0.9522 8300 3.14 - - -
0.9636 8400 3.1422 - - -
0.9751 8500 3.1923 - - -
0.9866 8600 3.1085 - - -
0.9980 8700 3.089 - - -
1.0 8717 - 0.6731 0.6771 0.6524

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.1
  • Transformers: 4.40.1
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
70
Safetensors
Model size
33.4M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka

Finetuned
(107)
this model

Space using sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka 1

Collection including sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka

Evaluation results