|
--- |
|
language: |
|
- multilingual |
|
- en |
|
- sw |
|
- ha |
|
- yo |
|
- ig |
|
- zu |
|
- sn |
|
- ar |
|
- am |
|
- fr |
|
- pt |
|
pipeline_tag: zero-shot-image-classification |
|
tags: |
|
- openCLIP |
|
- clip |
|
- vision transformer |
|
- pytorch |
|
- text-image embedding |
|
- AvilaBSE |
|
- sartify |
|
license: apache-2.0 |
|
--- |
|
|
|
A CLIP (Contrastive Language-Image Pre-training) model trained on DFN-5B. |
|
Data Filtering Networks (DFNs) are small networks used to automatically filter large pools of uncurated data. |
|
This model was trained on 5B images that were filtered from a pool of 43B uncurated image-text pairs |
|
(12.8B image-text pairs from CommonPool-12.8B + 30B additional public image-text pairs). |
|
|
|
This model has been converted to PyTorch from the original JAX checkpoints from Axlearn (https://github.com/apple/axlearn). |
|
These weights are directly usable in OpenCLIP (image + text). |
|
|
|
|
|
## Model Details |
|
|
|
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. |
|
- **Dataset:** DFN-5b |
|
- **Papers:** |
|
- Data Filtering Networks: https://arxiv.org/abs/2309.17425 |
|
- **Samples Seen:** 39B (224 x 224) + 5B (384 x 384) |
|
## Model Metrics |
|
| dataset | metric | |
|
|:-----------------------|---------:| |
|
| ImageNet 1k | 0.84218 | |
|
| Caltech-101 | 0.954479 | |
|
| CIFAR-10 | 0.9879 | |
|
| CIFAR-100 | 0.9041 | |
|
| CLEVR Counts | 0.362467 | |
|
| CLEVR Distance | 0.206067 | |
|
| Country211 | 0.37673 | |
|
| Describable Textures | 0.71383 | |
|
| EuroSAT | 0.608333 | |
|
| FGVC Aircraft | 0.719938 | |
|
| Food-101 | 0.963129 | |
|
| GTSRB | 0.679018 | |
|
| ImageNet Sketch | 0.73338 | |
|
| ImageNet v2 | 0.7837 | |
|
| ImageNet-A | 0.7992 | |
|
| ImageNet-O | 0.3785 | |
|
| ImageNet-R | 0.937633 | |
|
| KITTI Vehicle Distance | 0.38256 | |
|
| MNIST | 0.8372 | |
|
| ObjectNet <sup>1</sup> | 0.796867 | |
|
| Oxford Flowers-102 | 0.896834 | |
|
| Oxford-IIIT Pet | 0.966841 | |
|
| Pascal VOC 2007 | 0.826255 | |
|
| PatchCamelyon | 0.695953 | |
|
| Rendered SST2 | 0.566722 | |
|
| RESISC45 | 0.755079 | |
|
| Stanford Cars | 0.959955 | |
|
| STL-10 | 0.991125 | |
|
| SUN397 | 0.772799 | |
|
| SVHN | 0.671251 | |
|
| Flickr | 0.8808 | |
|
| MSCOCO | 0.636889 | |
|
| WinoGAViL | 0.571813 | |
|
| iWildCam | 0.224911 | |
|
| Camelyon17 | 0.711536 | |
|
| FMoW | 0.209024 | |
|
| Dollar Street | 0.71729 | |
|
| GeoDE | 0.935699 | |
|
| **Average** | **0.709421** | |
|
|
|
|
|
[1]: Center-crop pre-processing used for ObjectNet (squashing results in lower accuracy of 0.737) |
|
## Model Usage |
|
### With OpenCLIP |
|
``` |
|
import torch |
|
import torch.nn.functional as F |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
from open_clip import create_model_from_pretrained, get_tokenizer |
|
|
|
model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384') |
|
tokenizer = get_tokenizer('ViT-H-14') |
|
|
|
image = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
image = preprocess(image).unsqueeze(0) |
|
|
|
labels_list = ["a dog", "a cat", "a donut", "a beignet"] |
|
text = tokenizer(labels_list, context_length=model.context_length) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features = F.normalize(image_features, dim=-1) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) |
|
|
|
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) |
|
print("Label probabilities: ", zipped_list) |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{fang2023data, |
|
title={Data Filtering Networks}, |
|
author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal}, |
|
journal={arXiv preprint arXiv:2309.17425}, |
|
year={2023} |
|
} |
|
|
|
``` |