|
--- |
|
language: |
|
- hu |
|
license: apache-2.0 |
|
base_model: openai/whisper-large-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper large-v2 CV18 Hu |
|
results: [] |
|
datasets: |
|
- fsicoli/common_voice_18_0 |
|
- google/fleurs |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper large-v2 CV18 Hu |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whispe r-large-v2) on the fsicoli/common_voice_18_0 dataset. |
|
It achieves the following results on the evaluation google/fleurs set: |
|
- Loss: 0.3493 |
|
- Wer Ortho: 21.9936 |
|
- Wer: 16.0057 |
|
|
|
### Összesített Metrikák ### |
|
google/fleurs_hu_hu_test: |
|
- Átlagos WER: 21.75% |
|
- Átlagos CER: 6.10% |
|
- Átlagos Normalizált WER: 14.73% |
|
- Átlagos Normalizált CER: 4.73% |
|
|
|
common_voice_17_0_hu_test (it's a fals test (test split was in training)): |
|
- Átlagos WER: 1.16% |
|
- Átlagos CER: 0.22% |
|
- Átlagos Normalizált WER: 0.79% |
|
- Átlagos Normalizált CER: 0.16% |
|
|
|
|
|
# Kvantált modellek eredményei: |
|
| Model | WER | CER | Normalized_WER | Normalized_CER | Database | Split | Runtime | |
|
|:---------------------------------------------------------|:------|:------|:-----------------|:-----------------|:--------------|:--------|:----------| |
|
| int8_bfloat16 | 21.49 | 5.93 | 16.04 | 6.21 | google/fleurs | test | 550.18 | |
|
| bfloat16 | 21.33 | 5.87 | 15.91 | 6.15 | google/fleurs | test | 593.96 | |
|
| int8 | 21.01 | 5.63 | 15.38 | 5.88 | google/fleurs | test | 668.91 | |
|
| int8_float32 | 21.01 | 5.63 | 15.38 | 5.88 | google/fleurs | test | 669.81 | |
|
| int8_float16 | 20.96 | 5.65 | 15.31 | 5.91 | google/fleurs | test | 570.11 | |
|
| float16 | 20.92 | 5.64 | 15.24 | 5.9 | google/fleurs | test | 589.29 | |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------:| |
|
| 0.1543 | 0.1 | 500 | 0.3619 | 25.7695 | 21.5802 | |
|
| 0.1336 | 0.2 | 1000 | 0.3661 | 26.4197 | 21.9212 | |
|
| 0.1358 | 0.3 | 1500 | 0.3516 | 25.4414 | 20.7548 | |
|
| 0.1165 | 0.39 | 2000 | 0.3431 | 25.3937 | 20.3601 | |
|
| 0.0959 | 0.49 | 2500 | 0.3581 | 26.6345 | 20.4438 | |
|
| 0.1045 | 0.59 | 3000 | 0.3427 | 25.9127 | 19.9653 | |
|
| 0.099 | 0.69 | 3500 | 0.3380 | 25.3937 | 19.6902 | |
|
| 0.1034 | 0.79 | 4000 | 0.3412 | 24.5765 | 19.0083 | |
|
| 0.0919 | 0.89 | 4500 | 0.3370 | 25.0119 | 19.3672 | |
|
| 0.077 | 0.99 | 5000 | 0.3295 | 24.5884 | 19.3433 | |
|
| 0.0447 | 1.09 | 5500 | 0.3405 | 23.6220 | 17.5668 | |
|
| 0.0435 | 1.18 | 6000 | 0.3364 | 23.2999 | 17.4353 | |
|
| 0.0383 | 1.28 | 6500 | 0.3370 | 22.9957 | 17.4831 | |
|
| 0.0388 | 1.38 | 7000 | 0.3391 | 22.9838 | 17.1123 | |
|
| 0.0436 | 1.48 | 7500 | 0.3345 | 22.7332 | 17.6745 | |
|
| 0.0466 | 1.58 | 8000 | 0.3327 | 23.6101 | 17.3994 | |
|
| 0.0357 | 1.68 | 8500 | 0.3477 | 24.2961 | 17.8121 | |
|
| 0.0417 | 1.78 | 9000 | 0.3259 | 22.8883 | 16.7115 | |
|
| 0.0383 | 1.88 | 9500 | 0.3206 | 22.0055 | 16.5859 | |
|
| 0.0381 | 1.97 | 10000 | 0.3425 | 23.1508 | 16.8192 | |
|
| 0.0153 | 2.07 | 10500 | 0.3461 | 22.5304 | 16.9807 | |
|
| 0.0158 | 2.17 | 11000 | 0.3467 | 22.8227 | 16.7115 | |
|
| 0.0228 | 2.27 | 11500 | 0.3439 | 22.3276 | 16.4244 | |
|
| 0.0231 | 2.37 | 12000 | 0.3581 | 23.3954 | 16.6756 | |
|
| 0.0171 | 2.47 | 12500 | 0.3537 | 22.7094 | 16.4304 | |
|
| 0.0188 | 2.57 | 13000 | 0.3503 | 22.4588 | 16.8072 | |
|
| 0.0157 | 2.67 | 13500 | 0.3518 | 22.5245 | 16.3826 | |
|
| 0.0154 | 2.76 | 14000 | 0.3534 | 22.2739 | 16.0715 | |
|
| 0.0205 | 2.86 | 14500 | 0.3479 | 21.9399 | 16.0237 | |
|
| 0.0164 | 2.96 | 15000 | 0.3493 | 21.9936 | 16.0057 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |