library_name: transformers
language:
- hu
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-finetuned-hu
results: []
fontos információ, mielött használnád, tesztelnéd
Sajnos úgy tűnik, hogy a Ct2 kvantálás során valami elvész, elromlik a modellben, szinte használhatatlanná válik, az max output tokenek száma drasztikusan leesik, nagyon csonkolja a mondatokat. Még nem tudom hol a határ időben, token számban ahol eklezd csonkolni, de max 10 sec körül vagy inkább alatta. Natív F32-ben szépen dolgozik ahogy a teszteredmények is mutatják, így viszont elveszti a sebességét, ami az értelme lenne. Lehet újra indítom a finomhangolást nativan Float16-on, hogy lássam azzal a modellel mi történik a kvantálás során. (Az original modell is Float16-ban van)
whisper-large-v3-turbo-finetuned-hu
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:
- Loss: 0.0287
- Wer: 0.0748
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0574 | 0.1176 | 2000 | 0.0581 | 0.1432 |
0.0495 | 0.2352 | 4000 | 0.0517 | 0.1283 |
0.0474 | 0.3528 | 6000 | 0.0479 | 0.1184 |
0.0454 | 0.4704 | 8000 | 0.0440 | 0.1107 |
0.0409 | 0.5880 | 10000 | 0.0416 | 0.1024 |
0.0402 | 0.7056 | 12000 | 0.0419 | 0.1045 |
0.0377 | 0.8231 | 14000 | 0.0387 | 0.0941 |
0.0377 | 0.9407 | 16000 | 0.0371 | 0.0950 |
0.0253 | 1.0583 | 18000 | 0.0360 | 0.0899 |
0.0244 | 1.1759 | 20000 | 0.0352 | 0.0884 |
0.0238 | 1.2935 | 22000 | 0.0342 | 0.0884 |
0.023 | 1.4111 | 24000 | 0.0329 | 0.0851 |
0.0224 | 1.5287 | 26000 | 0.0320 | 0.0819 |
0.0212 | 1.6463 | 28000 | 0.0310 | 0.0805 |
0.0196 | 1.7639 | 30000 | 0.0301 | 0.0778 |
0.0189 | 1.8815 | 32000 | 0.0292 | 0.0762 |
0.0193 | 1.9991 | 34000 | 0.0287 | 0.0748 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.21.0