sarpba's picture
Update README.md
a76f6b2 verified
metadata
library_name: transformers
language:
  - hu
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-finetuned-hu
    results: []

fontos információ, mielött használnád, tesztelnéd

Sajnos úgy tűnik, hogy a Ct2 kvantálás során valami elvész, elromlik a modellben, szinte használhatatlanná válik, az max output tokenek száma drasztikusan leesik, nagyon csonkolja a mondatokat. Még nem tudom hol a határ időben, token számban ahol eklezd csonkolni, de max 10 sec körül vagy inkább alatta. Natív F32-ben szépen dolgozik ahogy a teszteredmények is mutatják, így viszont elveszti a sebességét, ami az értelme lenne. Lehet újra indítom a finomhangolást nativan Float16-on, hogy lássam azzal a modellel mi történik a kvantálás során. (Az original modell is Float16-ban van)

whisper-large-v3-turbo-finetuned-hu

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0287
  • Wer: 0.0748

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0574 0.1176 2000 0.0581 0.1432
0.0495 0.2352 4000 0.0517 0.1283
0.0474 0.3528 6000 0.0479 0.1184
0.0454 0.4704 8000 0.0440 0.1107
0.0409 0.5880 10000 0.0416 0.1024
0.0402 0.7056 12000 0.0419 0.1045
0.0377 0.8231 14000 0.0387 0.0941
0.0377 0.9407 16000 0.0371 0.0950
0.0253 1.0583 18000 0.0360 0.0899
0.0244 1.1759 20000 0.0352 0.0884
0.0238 1.2935 22000 0.0342 0.0884
0.023 1.4111 24000 0.0329 0.0851
0.0224 1.5287 26000 0.0320 0.0819
0.0212 1.6463 28000 0.0310 0.0805
0.0196 1.7639 30000 0.0301 0.0778
0.0189 1.8815 32000 0.0292 0.0762
0.0193 1.9991 34000 0.0287 0.0748

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.21.0