UDA-LIDI-Whisper-large-v2-ECU-911

This model is a fine-tuned version of openai/whisper-large-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8833
  • Wer: 40.0395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7079 1.0 91 0.6057 39.6640
0.4014 2.0 182 0.5828 39.2292
0.2505 3.0 273 0.6180 40.7115
0.1528 4.0 364 0.6764 40.0791
0.0971 5.0 455 0.7001 39.8221
0.0637 6.0 546 0.7852 42.6680
0.0445 7.0 637 0.8403 39.6640
0.0341 8.0 728 0.8778 40.9684
0.0304 9.0 819 0.8678 39.2292
0.0256 9.8950 900 0.8833 40.0395

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for santyzenith/UDA-LIDI-Whisper-large-v2-ECU-911

Finetuned
(187)
this model