metadata
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: gpt2-alpaca-instruction-fine-tuning-lora
results: []
gpt2-alpaca-instruction-fine-tuning-lora
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.118 | 0.11 | 1000 | 1.7807 |
1.8878 | 0.22 | 2000 | 1.7477 |
1.8609 | 0.33 | 3000 | 1.7318 |
1.8489 | 0.44 | 4000 | 1.7207 |
1.8416 | 0.55 | 5000 | 1.7134 |
1.8181 | 0.66 | 6000 | 1.7082 |
1.8144 | 0.77 | 7000 | 1.7021 |
1.816 | 0.88 | 8000 | 1.6987 |
1.7825 | 0.99 | 9000 | 1.6981 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3