File size: 18,397 Bytes
cbcb859
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n    Policy class (with both actor and critic) for SAC.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n    :param features_extractor_class: Features extractor to use.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    :param n_critics: Number of critic networks to create.\n    :param share_features_extractor: Whether to share or not the features extractor\n        between the actor and the critic (this saves computation time)\n    ", "__init__": "<function MultiInputPolicy.__init__ at 0x7e24c3e792d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e7e6c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691553022119493399, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUUqpvOD9kL8/RcY9Eie2vm5zlD/SSsY9bXsNvkC1Ez/rSMY9nIecv5nznb89SsY9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb2Zxv9gRfz+3H4y/UggAPw2tBr4Ci/S+EirIv9xqgj2Kp44/FT+yv6YOsr9i9iE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABSG20+4M9Zv4rSeD+JJ4c+GduEvQyNaz4u/o0/UUqpvOD9kL8/RcY9O2osvFZXcjtMiUW7SdQ5PUPEDz2/UTo99Jc6vHFWILw6u4C7Tyccv3XXK8D3+FS/cIgLPyGX7b2RYGE/q+OXPxIntr5uc5Q/0krGPRBvK7yPymk7gR9au6dXOz2CZA89XFE7PWfAG7w7sty7Ft+FuyQVdD9lzXu/2nfYPtlMRD62+TC+AS4BvYvuaL9tew2+QLUTP+tIxj3LNi28jC1kO4mkp7rw4To9zXIRPcBROj3dlzq8W1YgvCDHX7t00Hu+yuYOPTJTc79osAM/XrzXPst9I7zJy2m/nIecv5nznb89SsY9BX8qvD4KXzuKgBW73Fg4PXJYEj0lUjk9RTJrvOQNQLzYlHW7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.02066532 -1.1327477   0.09681176]\n [-0.35576683  1.1597726   0.0968224 ]\n [-0.13816614  0.5769844   0.09681877]\n [-1.2228885  -1.2339965   0.09682129]]", "desired_goal": "[[-0.94296926  0.996366   -1.0947179 ]\n [ 0.50012696 -0.13151951 -0.47762305]\n [-1.5637839   0.06368038  1.1144879 ]\n [-1.3925501  -1.391072    0.15816644]]", "observation": "[[ 2.31549531e-01 -8.50828171e-01  9.71962571e-01  2.63973504e-01\n  -6.48710206e-02  2.30030239e-01  1.10931945e+00 -2.06653196e-02\n  -1.13274765e+00  9.68117639e-02 -1.05233742e-02  3.69783258e-03\n  -3.01416498e-03  4.53684665e-02  3.50992791e-02  4.54881154e-02\n  -1.13887675e-02 -9.78623424e-03 -3.92856915e-03]\n [-6.09974802e-01 -2.68502545e+00 -8.31923902e-01  5.45050621e-01\n  -1.16010912e-01  8.80379736e-01  1.18663538e+00 -3.55766833e-01\n   1.15977263e+00  9.68223959e-02 -1.04634911e-02  3.56737128e-03\n  -3.32829379e-03  4.57378887e-02  3.50079611e-02  4.57318872e-02\n  -9.50632151e-03 -6.73511392e-03 -4.08543181e-03]\n [ 9.53447580e-01 -9.83602822e-01  4.22789395e-01  1.91699401e-01\n  -1.72827572e-01 -3.15380134e-02 -9.09889877e-01 -1.38166144e-01\n   5.76984406e-01  9.68187675e-02 -1.05721457e-02  3.48171871e-03\n  -1.27901242e-03  4.56256270e-02  3.55098732e-02  4.54881191e-02\n  -1.13887461e-02 -9.78621375e-03 -3.41457874e-03]\n [-2.45912373e-01  3.48880664e-02 -9.50488210e-01  5.14410496e-01\n   4.21359003e-01 -9.97872185e-03 -9.13265765e-01 -1.22288847e+00\n  -1.23399651e+00  9.68212858e-02 -1.04062604e-02  3.40332044e-03\n  -2.28122110e-03  4.50066179e-02  3.57288793e-02  4.52443548e-02\n  -1.43552469e-02 -1.17220618e-02 -3.74727510e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANLDwu6q5Br7WwKM8hOkwvTgxAT6pwaM8mCOjvHNneD1hwaM8FzYLvpJhEr6TwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVaqjvYP+rj0K16M8Xf82PUovQ7wklXo9z7cIvjLDoTv2bis+sSjzvScR971oLdQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACru409wdQlvr3ukD7O7Bc9PZoevEwWhz2ZOJc9NLDwu6q5Br7WwKM8J5mWtmLWGTimxzG5kxwxNbrAN7f4iIystpiTrvwkii+1wMq4TMR3vZMJF7/zeq48s+nWPfgZ77yn2qQ+YQCdPYTpML04MQE+qcGjPKQk+zabVL43qjGaudn97zc8Ipy3i3ioNwNqnDq+dvY68HCcuafLOD5tj0W+PUJQPnLvoDzyUVC9tJcXvdk2BDmYI6O8c2d4PWHBozyE5m63L5RiNzrqBzpwvqg3tAzFNzStbi3dp2cyc/ZaMmzqEzoejI+7pFA3PQshhjsWxMc9uQE0PpCo6bxkSD82FzYLvpJhEr6TwaM8RsaeNxgYqzbj7P04Cx7gtxmULzi7d6i3ynz2ul9fnLpXEg85lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00734522 -0.13156763  0.01998941]\n [-0.04319145  0.12616432  0.01998981]\n [-0.01991443  0.06064553  0.01998967]\n [-0.13594852 -0.14295033  0.01998976]]", "desired_goal": "[[-0.07991473  0.08544638  0.02      ]\n [ 0.04467713 -0.01191313  0.06117739]\n [-0.13351367  0.0049366   0.16741547]\n [-0.11872996 -0.12063818  0.10360223]]", "observation": "[[ 6.92056045e-02 -1.61944404e-01  2.83071429e-01  3.70910689e-02\n  -9.68032796e-03  6.59604967e-02  7.38384202e-02 -7.34522380e-03\n  -1.31567627e-01  1.99894123e-02 -4.48817764e-06  3.66777022e-05\n  -1.69544102e-04  6.59792192e-07 -1.09525226e-05 -3.99424591e-12\n  -6.71191297e-11  2.51283327e-10 -9.66800508e-05]\n [-6.04899377e-02 -5.89989841e-01  2.12988611e-02  1.04937933e-01\n  -2.91871876e-02  3.21980685e-01  7.66608790e-02 -4.31914479e-02\n   1.26164317e-01  1.99898053e-02  7.48464845e-06  2.26891625e-05\n  -2.94101716e-04  2.86092272e-05 -1.86125908e-05  2.00832928e-05\n   1.19334494e-03  1.88036985e-03 -2.98387837e-04]\n [ 1.80464372e-01 -1.92929938e-01  2.03377679e-01  1.96454264e-02\n  -5.08593991e-02 -3.70099097e-02  1.26089333e-04 -1.99144334e-02\n   6.06455319e-02  1.99896712e-02 -1.42395766e-05  1.35051514e-05\n   5.18474379e-04  2.01158400e-05  2.34901454e-05  1.35671925e-11\n   1.34841374e-08  1.27453061e-08  5.64253656e-04]\n [-4.38071694e-03  4.47546393e-02  4.09329450e-03  9.75419730e-02\n   1.75787821e-01 -2.85227597e-02  2.85033548e-06 -1.35948524e-01\n  -1.42950326e-01  1.99897643e-02  1.89273960e-05  5.09900201e-06\n   1.21081037e-04 -2.67168707e-05  4.18611780e-05 -2.00829145e-05\n  -1.88055006e-03 -1.19302783e-03  1.36443748e-04]]"}, "_episode_num": 20722, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C35CsTi83/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35GdqUNaydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35N13+uNhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35ZflhgE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35Ys7+1jRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35bj94u9OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35gKLGaQWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C35gidz4lAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rn4GlhxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rArpaA4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35t1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35yMLronsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C359BpL26DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C358f2Xb/PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35/TSw4bTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36DpAt4A0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OtLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OI7/4qPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36Q8RQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36VE1EVnFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36gBk3CKrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36fQuVX3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36iLLlmvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36nEkjX4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36ysHbAUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36yGfGuLadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C361C3gDRudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3656JhvzfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37FgtFrmAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37E1nZkCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Hn8baRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37L72HtWudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37XI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37WkhNdqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Zd4RmK7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37dg5q/M4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37oU3sHB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37nkYfnwHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37qWvB7/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37xUkOZssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37/+zQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38A0NKAavdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38Erl7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38OS39aUzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38cy/sVtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38dDRhMJydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C38dhhDw6RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38gCYTj//dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38k4QWepXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v/mozeodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v3cpLEldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38yXTiKixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C382oUnG83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BoegctHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BxkNFz/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39EKAJ9iMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39IeloDgZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39Tvfj0cwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C39UM1KoQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39ThT0g8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39V9WuHN5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39aRDgIhRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39leCkGiYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39kvwiJO4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39nB2bG3ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39qnrUsnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392pqEeySdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392LEDQqqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C394oZhrnDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C399U8mrsCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Jv0ulGgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+JT+NtIkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Lw6ltTDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+QmEXcgydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bwzDXOGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+dfqoqCpdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C3+d1uWKMvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+iEZzgdfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+tWahHskdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+sqttALRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+vhCD28JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+zk6YE4edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3++2VRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+/IjfNzKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/CjzVc2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/JmF36hydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X3PeHi4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X8YyfthdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/bR4lhPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/jfXkHUudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/xihFmWddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/w0Mw1zidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/zhO+IuXdX2UKGgGR8AsAAAAAAAAaAdLD2gIR0C3/16dpZfVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/3OaBqbjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ACQj+rEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AEIBFNL2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AGge7tiQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AH4bCJoCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmIiYmJiYllLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n    Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n    Extends the ReplayBuffer to use dictionary observations\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ", "__init__": "<function DictReplayBuffer.__init__ at 0x7e24c3e600d0>", "add": "<function DictReplayBuffer.add at 0x7e24c3e60160>", "sample": "<function DictReplayBuffer.sample at 0x7e24c3e601f0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7e24c3e60280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e4e0c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQOVXA/a6qRfwuiHJY0Yz7RowDaW5jlIoQvTgzi3pZlC/t1bzOdHtaKnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}