sanitas commited on
Commit
cbcb859
·
1 Parent(s): 08677a8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -45.00 +/- 15.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7e24c3e792d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e7e6c0>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691553022119493399, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUUqpvOD9kL8/RcY9Eie2vm5zlD/SSsY9bXsNvkC1Ez/rSMY9nIecv5nznb89SsY9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb2Zxv9gRfz+3H4y/UggAPw2tBr4Ci/S+EirIv9xqgj2Kp44/FT+yv6YOsr9i9iE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABSG20+4M9Zv4rSeD+JJ4c+GduEvQyNaz4u/o0/UUqpvOD9kL8/RcY9O2osvFZXcjtMiUW7SdQ5PUPEDz2/UTo99Jc6vHFWILw6u4C7Tyccv3XXK8D3+FS/cIgLPyGX7b2RYGE/q+OXPxIntr5uc5Q/0krGPRBvK7yPymk7gR9au6dXOz2CZA89XFE7PWfAG7w7sty7Ft+FuyQVdD9lzXu/2nfYPtlMRD62+TC+AS4BvYvuaL9tew2+QLUTP+tIxj3LNi28jC1kO4mkp7rw4To9zXIRPcBROj3dlzq8W1YgvCDHX7t00Hu+yuYOPTJTc79osAM/XrzXPst9I7zJy2m/nIecv5nznb89SsY9BX8qvD4KXzuKgBW73Fg4PXJYEj0lUjk9RTJrvOQNQLzYlHW7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.02066532 -1.1327477 0.09681176]\n [-0.35576683 1.1597726 0.0968224 ]\n [-0.13816614 0.5769844 0.09681877]\n [-1.2228885 -1.2339965 0.09682129]]", "desired_goal": "[[-0.94296926 0.996366 -1.0947179 ]\n [ 0.50012696 -0.13151951 -0.47762305]\n [-1.5637839 0.06368038 1.1144879 ]\n [-1.3925501 -1.391072 0.15816644]]", "observation": "[[ 2.31549531e-01 -8.50828171e-01 9.71962571e-01 2.63973504e-01\n -6.48710206e-02 2.30030239e-01 1.10931945e+00 -2.06653196e-02\n -1.13274765e+00 9.68117639e-02 -1.05233742e-02 3.69783258e-03\n -3.01416498e-03 4.53684665e-02 3.50992791e-02 4.54881154e-02\n -1.13887675e-02 -9.78623424e-03 -3.92856915e-03]\n [-6.09974802e-01 -2.68502545e+00 -8.31923902e-01 5.45050621e-01\n -1.16010912e-01 8.80379736e-01 1.18663538e+00 -3.55766833e-01\n 1.15977263e+00 9.68223959e-02 -1.04634911e-02 3.56737128e-03\n -3.32829379e-03 4.57378887e-02 3.50079611e-02 4.57318872e-02\n -9.50632151e-03 -6.73511392e-03 -4.08543181e-03]\n [ 9.53447580e-01 -9.83602822e-01 4.22789395e-01 1.91699401e-01\n -1.72827572e-01 -3.15380134e-02 -9.09889877e-01 -1.38166144e-01\n 5.76984406e-01 9.68187675e-02 -1.05721457e-02 3.48171871e-03\n -1.27901242e-03 4.56256270e-02 3.55098732e-02 4.54881191e-02\n -1.13887461e-02 -9.78621375e-03 -3.41457874e-03]\n [-2.45912373e-01 3.48880664e-02 -9.50488210e-01 5.14410496e-01\n 4.21359003e-01 -9.97872185e-03 -9.13265765e-01 -1.22288847e+00\n -1.23399651e+00 9.68212858e-02 -1.04062604e-02 3.40332044e-03\n -2.28122110e-03 4.50066179e-02 3.57288793e-02 4.52443548e-02\n -1.43552469e-02 -1.17220618e-02 -3.74727510e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANLDwu6q5Br7WwKM8hOkwvTgxAT6pwaM8mCOjvHNneD1hwaM8FzYLvpJhEr6TwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVaqjvYP+rj0K16M8Xf82PUovQ7wklXo9z7cIvjLDoTv2bis+sSjzvScR971oLdQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACru409wdQlvr3ukD7O7Bc9PZoevEwWhz2ZOJc9NLDwu6q5Br7WwKM8J5mWtmLWGTimxzG5kxwxNbrAN7f4iIystpiTrvwkii+1wMq4TMR3vZMJF7/zeq48s+nWPfgZ77yn2qQ+YQCdPYTpML04MQE+qcGjPKQk+zabVL43qjGaudn97zc8Ipy3i3ioNwNqnDq+dvY68HCcuafLOD5tj0W+PUJQPnLvoDzyUVC9tJcXvdk2BDmYI6O8c2d4PWHBozyE5m63L5RiNzrqBzpwvqg3tAzFNzStbi3dp2cyc/ZaMmzqEzoejI+7pFA3PQshhjsWxMc9uQE0PpCo6bxkSD82FzYLvpJhEr6TwaM8RsaeNxgYqzbj7P04Cx7gtxmULzi7d6i3ynz2ul9fnLpXEg85lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00734522 -0.13156763 0.01998941]\n [-0.04319145 0.12616432 0.01998981]\n [-0.01991443 0.06064553 0.01998967]\n [-0.13594852 -0.14295033 0.01998976]]", "desired_goal": "[[-0.07991473 0.08544638 0.02 ]\n [ 0.04467713 -0.01191313 0.06117739]\n [-0.13351367 0.0049366 0.16741547]\n [-0.11872996 -0.12063818 0.10360223]]", "observation": "[[ 6.92056045e-02 -1.61944404e-01 2.83071429e-01 3.70910689e-02\n -9.68032796e-03 6.59604967e-02 7.38384202e-02 -7.34522380e-03\n -1.31567627e-01 1.99894123e-02 -4.48817764e-06 3.66777022e-05\n -1.69544102e-04 6.59792192e-07 -1.09525226e-05 -3.99424591e-12\n -6.71191297e-11 2.51283327e-10 -9.66800508e-05]\n [-6.04899377e-02 -5.89989841e-01 2.12988611e-02 1.04937933e-01\n -2.91871876e-02 3.21980685e-01 7.66608790e-02 -4.31914479e-02\n 1.26164317e-01 1.99898053e-02 7.48464845e-06 2.26891625e-05\n -2.94101716e-04 2.86092272e-05 -1.86125908e-05 2.00832928e-05\n 1.19334494e-03 1.88036985e-03 -2.98387837e-04]\n [ 1.80464372e-01 -1.92929938e-01 2.03377679e-01 1.96454264e-02\n -5.08593991e-02 -3.70099097e-02 1.26089333e-04 -1.99144334e-02\n 6.06455319e-02 1.99896712e-02 -1.42395766e-05 1.35051514e-05\n 5.18474379e-04 2.01158400e-05 2.34901454e-05 1.35671925e-11\n 1.34841374e-08 1.27453061e-08 5.64253656e-04]\n [-4.38071694e-03 4.47546393e-02 4.09329450e-03 9.75419730e-02\n 1.75787821e-01 -2.85227597e-02 2.85033548e-06 -1.35948524e-01\n -1.42950326e-01 1.99897643e-02 1.89273960e-05 5.09900201e-06\n 1.21081037e-04 -2.67168707e-05 4.18611780e-05 -2.00829145e-05\n -1.88055006e-03 -1.19302783e-03 1.36443748e-04]]"}, "_episode_num": 20722, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C35CsTi83/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35GdqUNaydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35N13+uNhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35ZflhgE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35Ys7+1jRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35bj94u9OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35gKLGaQWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C35gidz4lAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rn4GlhxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rArpaA4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35t1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35yMLronsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C359BpL26DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C358f2Xb/PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35/TSw4bTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36DpAt4A0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OtLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OI7/4qPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36Q8RQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36VE1EVnFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36gBk3CKrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36fQuVX3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36iLLlmvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36nEkjX4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36ysHbAUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36yGfGuLadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C361C3gDRudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3656JhvzfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37FgtFrmAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37E1nZkCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Hn8baRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37L72HtWudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37XI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37WkhNdqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Zd4RmK7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37dg5q/M4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37oU3sHB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37nkYfnwHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37qWvB7/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37xUkOZssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37/+zQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38A0NKAavdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38Erl7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38OS39aUzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38cy/sVtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38dDRhMJydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C38dhhDw6RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38gCYTj//dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38k4QWepXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v/mozeodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v3cpLEldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38yXTiKixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C382oUnG83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BoegctHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BxkNFz/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39EKAJ9iMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39IeloDgZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39Tvfj0cwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C39UM1KoQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39ThT0g8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39V9WuHN5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39aRDgIhRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39leCkGiYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39kvwiJO4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39nB2bG3ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39qnrUsnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392pqEeySdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392LEDQqqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C394oZhrnDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C399U8mrsCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Jv0ulGgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+JT+NtIkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Lw6ltTDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+QmEXcgydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bwzDXOGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+dfqoqCpdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C3+d1uWKMvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+iEZzgdfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+tWahHskdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+sqttALRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+vhCD28JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+zk6YE4edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3++2VRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+/IjfNzKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/CjzVc2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/JmF36hydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X3PeHi4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X8YyfthdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/bR4lhPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/jfXkHUudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/xihFmWddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/w0Mw1zidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/zhO+IuXdX2UKGgGR8AsAAAAAAAAaAdLD2gIR0C3/16dpZfVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/3OaBqbjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ACQj+rEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AEIBFNL2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AGge7tiQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AH4bCJoCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmIiYmJiYllLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7e24c3e600d0>", "add": "<function DictReplayBuffer.add at 0x7e24c3e60160>", "sample": "<function DictReplayBuffer.sample at 0x7e24c3e601f0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7e24c3e60280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e24c3e4e0c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQOVXA/a6qRfwuiHJY0Yz7RowDaW5jlIoQvTgzi3pZlC/t1bzOdHtaKnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (669 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -45.0, "std_reward": 15.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T05:34:54.251251"}
sac-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982138830e52eacf5a31eb0982e38ea50aac2ac21b8e634cac1799640f96cd1f
3
+ size 3303563
sac-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
sac-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e34c65af7684541e6c4f1bc1f7f76a7acec9fcabb168fe6a93eed481e13a3893
3
+ size 602525
sac-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5beae90f8ac4c9fcf277f3b030080c67c7657c5bf90315a132ecfca11ceda8ad
3
+ size 1189369
sac-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7e24c3e792d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e24c3e7e6c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 1000000,
16
+ "_total_timesteps": 1000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1691553022119493399,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUUqpvOD9kL8/RcY9Eie2vm5zlD/SSsY9bXsNvkC1Ez/rSMY9nIecv5nznb89SsY9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb2Zxv9gRfz+3H4y/UggAPw2tBr4Ci/S+EirIv9xqgj2Kp44/FT+yv6YOsr9i9iE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABSG20+4M9Zv4rSeD+JJ4c+GduEvQyNaz4u/o0/UUqpvOD9kL8/RcY9O2osvFZXcjtMiUW7SdQ5PUPEDz2/UTo99Jc6vHFWILw6u4C7Tyccv3XXK8D3+FS/cIgLPyGX7b2RYGE/q+OXPxIntr5uc5Q/0krGPRBvK7yPymk7gR9au6dXOz2CZA89XFE7PWfAG7w7sty7Ft+FuyQVdD9lzXu/2nfYPtlMRD62+TC+AS4BvYvuaL9tew2+QLUTP+tIxj3LNi28jC1kO4mkp7rw4To9zXIRPcBROj3dlzq8W1YgvCDHX7t00Hu+yuYOPTJTc79osAM/XrzXPst9I7zJy2m/nIecv5nznb89SsY9BX8qvD4KXzuKgBW73Fg4PXJYEj0lUjk9RTJrvOQNQLzYlHW7lGgOSwRLE4aUaBJ0lFKUdS4=",
26
+ "achieved_goal": "[[-0.02066532 -1.1327477 0.09681176]\n [-0.35576683 1.1597726 0.0968224 ]\n [-0.13816614 0.5769844 0.09681877]\n [-1.2228885 -1.2339965 0.09682129]]",
27
+ "desired_goal": "[[-0.94296926 0.996366 -1.0947179 ]\n [ 0.50012696 -0.13151951 -0.47762305]\n [-1.5637839 0.06368038 1.1144879 ]\n [-1.3925501 -1.391072 0.15816644]]",
28
+ "observation": "[[ 2.31549531e-01 -8.50828171e-01 9.71962571e-01 2.63973504e-01\n -6.48710206e-02 2.30030239e-01 1.10931945e+00 -2.06653196e-02\n -1.13274765e+00 9.68117639e-02 -1.05233742e-02 3.69783258e-03\n -3.01416498e-03 4.53684665e-02 3.50992791e-02 4.54881154e-02\n -1.13887675e-02 -9.78623424e-03 -3.92856915e-03]\n [-6.09974802e-01 -2.68502545e+00 -8.31923902e-01 5.45050621e-01\n -1.16010912e-01 8.80379736e-01 1.18663538e+00 -3.55766833e-01\n 1.15977263e+00 9.68223959e-02 -1.04634911e-02 3.56737128e-03\n -3.32829379e-03 4.57378887e-02 3.50079611e-02 4.57318872e-02\n -9.50632151e-03 -6.73511392e-03 -4.08543181e-03]\n [ 9.53447580e-01 -9.83602822e-01 4.22789395e-01 1.91699401e-01\n -1.72827572e-01 -3.15380134e-02 -9.09889877e-01 -1.38166144e-01\n 5.76984406e-01 9.68187675e-02 -1.05721457e-02 3.48171871e-03\n -1.27901242e-03 4.56256270e-02 3.55098732e-02 4.54881191e-02\n -1.13887461e-02 -9.78621375e-03 -3.41457874e-03]\n [-2.45912373e-01 3.48880664e-02 -9.50488210e-01 5.14410496e-01\n 4.21359003e-01 -9.97872185e-03 -9.13265765e-01 -1.22288847e+00\n -1.23399651e+00 9.68212858e-02 -1.04062604e-02 3.40332044e-03\n -2.28122110e-03 4.50066179e-02 3.57288793e-02 4.52443548e-02\n -1.43552469e-02 -1.17220618e-02 -3.74727510e-03]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANLDwu6q5Br7WwKM8hOkwvTgxAT6pwaM8mCOjvHNneD1hwaM8FzYLvpJhEr6TwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVaqjvYP+rj0K16M8Xf82PUovQ7wklXo9z7cIvjLDoTv2bis+sSjzvScR971oLdQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACru409wdQlvr3ukD7O7Bc9PZoevEwWhz2ZOJc9NLDwu6q5Br7WwKM8J5mWtmLWGTimxzG5kxwxNbrAN7f4iIystpiTrvwkii+1wMq4TMR3vZMJF7/zeq48s+nWPfgZ77yn2qQ+YQCdPYTpML04MQE+qcGjPKQk+zabVL43qjGaudn97zc8Ipy3i3ioNwNqnDq+dvY68HCcuafLOD5tj0W+PUJQPnLvoDzyUVC9tJcXvdk2BDmYI6O8c2d4PWHBozyE5m63L5RiNzrqBzpwvqg3tAzFNzStbi3dp2cyc/ZaMmzqEzoejI+7pFA3PQshhjsWxMc9uQE0PpCo6bxkSD82FzYLvpJhEr6TwaM8RsaeNxgYqzbj7P04Cx7gtxmULzi7d6i3ynz2ul9fnLpXEg85lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[-0.00734522 -0.13156763 0.01998941]\n [-0.04319145 0.12616432 0.01998981]\n [-0.01991443 0.06064553 0.01998967]\n [-0.13594852 -0.14295033 0.01998976]]",
38
+ "desired_goal": "[[-0.07991473 0.08544638 0.02 ]\n [ 0.04467713 -0.01191313 0.06117739]\n [-0.13351367 0.0049366 0.16741547]\n [-0.11872996 -0.12063818 0.10360223]]",
39
+ "observation": "[[ 6.92056045e-02 -1.61944404e-01 2.83071429e-01 3.70910689e-02\n -9.68032796e-03 6.59604967e-02 7.38384202e-02 -7.34522380e-03\n -1.31567627e-01 1.99894123e-02 -4.48817764e-06 3.66777022e-05\n -1.69544102e-04 6.59792192e-07 -1.09525226e-05 -3.99424591e-12\n -6.71191297e-11 2.51283327e-10 -9.66800508e-05]\n [-6.04899377e-02 -5.89989841e-01 2.12988611e-02 1.04937933e-01\n -2.91871876e-02 3.21980685e-01 7.66608790e-02 -4.31914479e-02\n 1.26164317e-01 1.99898053e-02 7.48464845e-06 2.26891625e-05\n -2.94101716e-04 2.86092272e-05 -1.86125908e-05 2.00832928e-05\n 1.19334494e-03 1.88036985e-03 -2.98387837e-04]\n [ 1.80464372e-01 -1.92929938e-01 2.03377679e-01 1.96454264e-02\n -5.08593991e-02 -3.70099097e-02 1.26089333e-04 -1.99144334e-02\n 6.06455319e-02 1.99896712e-02 -1.42395766e-05 1.35051514e-05\n 5.18474379e-04 2.01158400e-05 2.34901454e-05 1.35671925e-11\n 1.34841374e-08 1.27453061e-08 5.64253656e-04]\n [-4.38071694e-03 4.47546393e-02 4.09329450e-03 9.75419730e-02\n 1.75787821e-01 -2.85227597e-02 2.85033548e-06 -1.35948524e-01\n -1.42950326e-01 1.99897643e-02 1.89273960e-05 5.09900201e-06\n 1.21081037e-04 -2.67168707e-05 4.18611780e-05 -2.00829145e-05\n -1.88055006e-03 -1.19302783e-03 1.36443748e-04]]"
40
+ },
41
+ "_episode_num": 20722,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C35CsTi83/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35GdqUNaydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35N13+uNhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35ZflhgE2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35Ys7+1jRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35bj94u9OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35gKLGaQWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C35gidz4lAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rn4GlhxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35rArpaA4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35t1XvH94dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35yMLronsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C359BpL26DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C358f2Xb/PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C35/TSw4bTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36DpAt4A0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OtLUTcqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36OI7/4qPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36Q8RQJokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36VE1EVnFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36gBk3CKrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36fQuVX3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36iLLlmvodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36nEkjX4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36ysHbAUMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C36yGfGuLadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C361C3gDRudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3656JhvzfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37FgtFrmAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37E1nZkCndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Hn8baRIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37L72HtWudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37XI6r/83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37WkhNdqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37Zd4RmK7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37dg5q/M4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37oU3sHB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37nkYfnwHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37qWvB7/odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37xUkOZssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C37/+zQeFMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38A0NKAavdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38Erl7tzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38OS39aUzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38cy/sVtXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38dDRhMJydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C38dhhDw6RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38gCYTj//dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38k4QWepXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v/mozeodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38v3cpLEldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C38yXTiKixdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C382oUnG83dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BoegctHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39BxkNFz/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39EKAJ9iMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39IeloDgZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39Tvfj0cwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C39UM1KoQ4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39ThT0g8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39V9WuHN5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39aRDgIhRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39leCkGiYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39kvwiJO4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39nB2bG3ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C39qnrUsnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392pqEeySdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C392LEDQqqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C394oZhrnDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C399U8mrsCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Jv0ulGgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+JT+NtIkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+Lw6ltTDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+QmEXcgydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bwzDXOGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+bFrVOKwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+dfqoqCpdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C3+d1uWKMvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+iEZzgdfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+tWahHskdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+sqttALRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+vhCD28JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+zk6YE4edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3++2VRk3CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3+/IjfNzKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/CjzVc2SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/JmF36hydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X3PeHi4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/X8YyfthdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/bR4lhPTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/jfXkHUudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/xihFmWddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/w0Mw1zidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/zhO+IuXdX2UKGgGR8AsAAAAAAAAaAdLD2gIR0C3/16dpZfVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C3/3OaBqbjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ACQj+rEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AEIBFNL2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AGge7tiQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4AH4bCJoCdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmJiYmIiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 249975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
67
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7e24c3e600d0>",
68
+ "add": "<function DictReplayBuffer.add at 0x7e24c3e60160>",
69
+ "sample": "<function DictReplayBuffer.sample at 0x7e24c3e601f0>",
70
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7e24c3e60280>",
71
+ "__abstractmethods__": "frozenset()",
72
+ "_abc_impl": "<_abc._abc_data object at 0x7e24c3e4e0c0>"
73
+ },
74
+ "replay_buffer_kwargs": {},
75
+ "train_freq": {
76
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
77
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
78
+ },
79
+ "use_sde_at_warmup": false,
80
+ "target_entropy": -4.0,
81
+ "ent_coef": "auto",
82
+ "target_update_interval": 1,
83
+ "observation_space": {
84
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
85
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
86
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
87
+ "_shape": null,
88
+ "dtype": null,
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVTwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQOVXA/a6qRfwuiHJY0Yz7RowDaW5jlIoQvTgzi3pZlC/t1bzOdHtaKnWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True]",
96
+ "bounded_above": "[ True True True True]",
97
+ "_shape": [
98
+ 4
99
+ ],
100
+ "low": "[-1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": "Generator(PCG64)"
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ },
111
+ "batch_norm_stats": [],
112
+ "batch_norm_stats_target": []
113
+ }
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12bc6856d519cfb4db3e39005329cb92cf15ce894b73e5fef7a659fa1d2675cb
3
+ size 1507
sac-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3129000fb666de2880434cc64d012e9913d5c89ac810c7a78455c39b65f7db5
3
+ size 1489349
sac-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6641d773ef52c9f05001e07a24ec0a25451fb0082aaac581bcddb5683eddbe50
3
+ size 747
sac-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d9533a7c1943dda27a4b47e4c6ca49ddc2990fe26c2e13441a6cc58b9594d19
3
+ size 3187