Demo in a fill-mask task

from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline

model_name = 'sangjeedondrub/tibetan-roberta-base'
model = AutoModelForMaskedLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

fill_mask_pipe = pipeline(
    "fill-mask",
    model=model,
    tokenizer=tokenizer
)

samples = """རིན་ <mask>
ཆོས་ཀྱི་ <mask>
རྫོགས་པའི་ <mask>
གངས་རིའི་ <mask>
མེ་ལོང་ <mask>
བདེན་པའི་ <mask>
'འབྱུང་ <mask>""".splitlines()

for idx, sample in enumerate(samples, start=1):
  outputs = fill_mask_pipe(sample)
  print(idx, sample)
  for output in outputs:
    print(output)

Output

1 རིན་ <mask>
{'score': 0.943362832069397, 'token': 459, 'token_str': 'ཐང', 'sequence': 'རིན་ཐང'}
{'score': 0.025716140866279602, 'token': 282, 'token_str': 'པ', 'sequence': 'རིན་པ'}
{'score': 0.004410382825881243, 'token': 596, 'token_str': 'འཕར', 'sequence': 'རིན་འཕར'}
{'score': 0.003161463886499405, 'token': 561, 'token_str': 'ཅང', 'sequence': 'རིན་ཅང'}
{'score': 0.0025683969724923372, 'token': 360, 'token_str': 'གནས', 'sequence': 'རིན་གནས'}
2 ཆོས་ཀྱི་ <mask>
{'score': 0.08558642119169235, 'token': 476, 'token_str': 'དཔལ', 'sequence': 'ཆོས་ཀྱི་དཔལ'}
{'score': 0.0616581067442894, 'token': 323, 'token_str': 'ལས', 'sequence': 'ཆོས་ཀྱི་ལས'}
{'score': 0.04617622494697571, 'token': 568, 'token_str': 'ཉམས', 'sequence': 'ཆོས་ཀྱི་ཉམས'}
{'score': 0.042447883635759354, 'token': 467, 'token_str': 'དབང', 'sequence': 'ཆོས་ཀྱི་དབང'}
{'score': 0.0358237698674202, 'token': 768, 'token_str': 'དད', 'sequence': 'ཆོས་ཀྱི་དད'}
3 རྫོགས་པའི་ <mask>
{'score': 0.06635843217372894, 'token': 323, 'token_str': 'ལས', 'sequence': 'རྫོགས་པའི་ལས'}
{'score': 0.06410858780145645, 'token': 360, 'token_str': 'གནས', 'sequence': 'རྫོགས་པའི་གནས'}
{'score': 0.0570441335439682, 'token': 573, 'token_str': 'གཏམ', 'sequence': 'རྫོགས་པའི་གཏམ'}
{'score': 0.05679900944232941, 'token': 397, 'token_str': 'ལམ', 'sequence': 'རྫོགས་པའི་ལམ'}
{'score': 0.05157950520515442, 'token': 543, 'token_str': 'མཚན', 'sequence': 'རྫོགས་པའི་མཚན'}
4 གངས་རིའི་ <mask>
{'score': 0.21429458260536194, 'token': 971, 'token_str': 'འདབས', 'sequence': 'གངས་རིའི་འདབས'}
{'score': 0.05296638607978821, 'token': 360, 'token_str': 'གནས', 'sequence': 'གངས་རིའི་གནས'}
{'score': 0.04839177057147026, 'token': 712, 'token_str': 'གངས', 'sequence': 'གངས་རིའི་གངས'}
{'score': 0.04389436915516853, 'token': 984, 'token_str': 'འདབ', 'sequence': 'གངས་རིའི་འདབ'}
{'score': 0.04158150777220726, 'token': 274, 'token_str': 'ན', 'sequence': 'གངས་རིའི་ན'}
5 མེ་ལོང་ <mask>
{'score': 0.19395706057548523, 'token': 323, 'token_str': 'ལས', 'sequence': 'མེ་ལོང་ལས'}
{'score': 0.12707622349262238, 'token': 293, 'token_str': 'དང', 'sequence': 'མེ་ལོང་དང'}
{'score': 0.08089829981327057, 'token': 280, 'token_str': 'མ', 'sequence': 'མེ་ལོང་མ'}
{'score': 0.06481984257698059, 'token': 279, 'token_str': 'ལ', 'sequence': 'མེ་ལོང་ལ'}
{'score': 0.0577043853700161, 'token': 362, 'token_str': 'ནང', 'sequence': 'མེ་ལོང་ནང'}
6 བདེན་པའི་ <mask>
{'score': 0.12633271515369415, 'token': 573, 'token_str': 'གཏམ', 'sequence': 'བདེན་པའི་གཏམ'}
{'score': 0.0909079909324646, 'token': 360, 'token_str': 'གནས', 'sequence': 'བདེན་པའི་གནས'}
{'score': 0.08624855428934097, 'token': 397, 'token_str': 'ལམ', 'sequence': 'བདེན་པའི་ལམ'}
{'score': 0.07476165890693665, 'token': 362, 'token_str': 'ནང', 'sequence': 'བདེན་པའི་ནང'}
{'score': 0.06319335103034973, 'token': 323, 'token_str': 'ལས', 'sequence': 'བདེན་པའི་ལས'}
7 'འབྱུང་ <mask>
{'score': 0.8271735906600952, 'token': 360, 'token_str': 'གནས', 'sequence': "'འབྱུང་གནས"}
{'score': 0.10802919417619705, 'token': 270, 'token_str': 'བ', 'sequence': "'འབྱུང་བ"}
{'score': 0.021947095170617104, 'token': 503, 'token_str': 'ཁམས', 'sequence': "'འབྱུང་ཁམས"}
{'score': 0.006081813480705023, 'token': 484, 'token_str': 'རབས', 'sequence': "'འབྱུང་རབས"}
{'score': 0.002384472405537963, 'token': 293, 'token_str': 'དང', 'sequence': "'འབྱུང་དང"}

About

This model is trained and released by Sangjee Dondrub [sangjeedondrub at live dot com], the mere purpose of conducting these experiments is to improve my familiarity with Transformers APIs.

Downloads last month
36
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sangjeedondrub/tibetan-roberta-base

Finetunes
2 models

Space using sangjeedondrub/tibetan-roberta-base 1