Model Summary

phi2-ultrachat-qlora is a Transformer fine tuned using the ultrachat dataset.

Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.

Inference Code:

import warnings
from transformers import AutoModelForCausalLM, AutoTokenizer

path= f"sandeepsundaram/phi2-ultrachat-qlora"
tokenizer = AutoTokenizer.from_pretrained(path)
tokenizer.eos_token_id = model.config.eos_token_id
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_special_tokens({'pad_token': '[PAD]'})

warnings.filterwarnings('ignore')  # Ignore all warnings
#inputs = tokenizer('Question: why human are cute then human? write in the form of poem. \n Output: ', return_tensors="pt", return_attention_mask=False).to('cuda')
inputs = tokenizer('''write code for fibonaci series in python.''', return_tensors="pt", return_attention_mask=False).to('cuda')
generation_params = {
    'max_length': 512,
    'do_sample': True,
    'temperature': .5,
    'top_p': 0.9,
    'top_k': 50
}

outputs = model.generate(**inputs, **generation_params)
decoded_outputs = tokenizer.batch_decode(outputs)

for text in decoded_outputs:
    text = text.replace('\\n', '\n')
    print(text)
    print("\n\n")
Downloads last month
13
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sandeepsundaram/phi2-ultrachat-qlora