sanchit-gandhi's picture
End of training
7f48aac verified
metadata
base_model: sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat
    results: []

sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat

This model is a fine-tuned version of sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6412
  • Rewards/chosen: -0.1044
  • Rewards/rejected: -0.2494
  • Rewards/accuracies: 0.6445
  • Rewards/margins: 0.1450
  • Logps/rejected: -429.4582
  • Logps/chosen: -433.6304
  • Logits/rejected: -3.2047
  • Logits/chosen: -3.2544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6795 0.2092 100 0.6759 0.0017 -0.0328 0.6289 0.0345 -407.8037 -423.0197 -3.2565 -3.3136
0.6584 0.4184 200 0.6534 -0.0666 -0.1617 0.6445 0.0951 -420.6952 -429.8561 -3.2240 -3.2768
0.6494 0.6276 300 0.6438 -0.1077 -0.2410 0.6211 0.1333 -428.6237 -433.9640 -3.2050 -3.2553
0.6428 0.8368 400 0.6415 -0.1001 -0.2437 0.6211 0.1436 -428.8884 -433.2000 -3.2046 -3.2543

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1