roberta-base-ner-demo

This model is a fine-tuned version of bayartsogt/mongolian-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1307
  • Precision: 0.9299
  • Recall: 0.9402
  • F1: 0.9350
  • Accuracy: 0.9805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7194 0.9958 119 0.1195 0.7550 0.8328 0.7920 0.9602
0.103 2.0 239 0.0894 0.8341 0.8782 0.8556 0.9695
0.0517 2.9958 358 0.0761 0.9138 0.9321 0.9228 0.9792
0.0255 4.0 478 0.0921 0.9118 0.9287 0.9202 0.9778
0.016 4.9958 597 0.0945 0.9242 0.9343 0.9292 0.9794
0.0102 6.0 717 0.0978 0.9266 0.9382 0.9324 0.9801
0.0066 6.9958 836 0.1092 0.9265 0.9368 0.9316 0.9800
0.005 8.0 956 0.1150 0.9228 0.9366 0.9297 0.9796
0.0034 8.9958 1075 0.1189 0.9274 0.9373 0.9323 0.9800
0.003 10.0 1195 0.1242 0.9215 0.9360 0.9287 0.9793
0.0025 10.9958 1314 0.1288 0.9256 0.9375 0.9315 0.9797
0.0016 12.0 1434 0.1318 0.9273 0.9365 0.9319 0.9799
0.0015 12.9958 1553 0.1314 0.9286 0.9394 0.9340 0.9801
0.0013 14.0 1673 0.1308 0.9290 0.9393 0.9341 0.9803
0.0012 14.9372 1785 0.1307 0.9299 0.9402 0.9350 0.9805

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
122
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sanchirjav/roberta-base-ner-demo

Finetuned
(21)
this model