mt5.balanced.old / README.md
samzirbo's picture
End of training
3597a41 verified
|
raw
history blame
2.23 kB
---
base_model: samzirbo/mT5.en-es.pretrained
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mt5.balanced
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5.balanced
This model is a fine-tuned version of [samzirbo/mT5.en-es.pretrained](https://huggingface.co/samzirbo/mT5.en-es.pretrained) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4858
- Bleu: 39.6397
- Meteor: 0.6687
- Chrf++: 61.2886
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- training_steps: 30000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Chrf++ |
|:-------------:|:------:|:-----:|:---------------:|:-------:|:------:|:-------:|
| 4.0381 | 0.5398 | 3000 | 2.0786 | 30.3181 | 0.59 | 53.6607 |
| 2.3046 | 1.0795 | 6000 | 1.8303 | 34.3855 | 0.6263 | 57.2186 |
| 2.0531 | 1.6193 | 9000 | 1.6969 | 36.2615 | 0.643 | 58.7366 |
| 1.9175 | 2.1591 | 12000 | 1.6209 | 37.2847 | 0.6507 | 59.5299 |
| 1.814 | 2.6988 | 15000 | 1.5698 | 38.2556 | 0.6599 | 60.3273 |
| 1.746 | 3.2386 | 18000 | 1.5331 | 38.7361 | 0.6629 | 60.6706 |
| 1.6921 | 3.7783 | 21000 | 1.5058 | 39.1633 | 0.6658 | 60.9563 |
| 1.6484 | 4.3181 | 24000 | 1.4933 | 39.4633 | 0.6677 | 61.1991 |
| 1.6291 | 4.8579 | 27000 | 1.4869 | 39.5943 | 0.6687 | 61.2864 |
| 1.6185 | 5.3976 | 30000 | 1.4858 | 39.6397 | 0.6687 | 61.2886 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1