finetuned-clothes / README.md
samokosik's picture
Update README.md
5f05b6d verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: finetuned-clothes
    results: []

finetuned-clothes

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the clothes_simplifiedv2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2225
  • Accuracy: 0.9417

Model description

This model classifies clothes category based on the given image.

Intended uses

You can use it in a jupyter notebook:

from PIL import Image
import requests

url = 'insert image url here'
image = Image.open(requests.get(url, stream=True).raw)
from transformers import AutoModelForImageClassification, AutoImageProcessor

repo_name = "samokosik/finetuned-clothes"

image_processor = AutoImageProcessor.from_pretrained(repo_name)
model = AutoModelForImageClassification.from_pretrained(repo_name)
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
print(encoding.pixel_values.shape)
import torch
with torch.no_grad():
  outputs = model(**encoding)
  logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

Limitations

Due to lack of available data, we support only these categories: hat, longsleeve, outswear, pants, shoes, shorts, shortsleve.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7725 0.2058 100 0.7008 0.8178
0.5535 0.4115 200 0.4494 0.8994
0.4334 0.6173 300 0.3649 0.9169
0.3921 0.8230 400 0.3085 0.9184
0.3695 1.0288 500 0.3091 0.9184
0.2634 1.2346 600 0.3339 0.9082
0.4788 1.4403 700 0.2827 0.9257
0.3337 1.6461 800 0.2499 0.9344
0.34 1.8519 900 0.2586 0.9315
0.2424 2.0576 1000 0.2248 0.9402
0.1559 2.2634 1100 0.2333 0.9344
0.351 2.4691 1200 0.2495 0.9359
0.2206 2.6749 1300 0.2622 0.9242
0.3814 2.8807 1400 0.3138 0.9155
0.2141 3.0864 1500 0.2613 0.9315
0.112 3.2922 1600 0.2266 0.9402
0.0631 3.4979 1700 0.2255 0.9402
0.1986 3.7037 1800 0.2225 0.9417
0.2345 3.9095 1900 0.2235 0.9373

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1

Training dataset

This model was trained on the following dataset: https://huggingface.co/datasets/samokosik/clothes_simplifiedv2