Step 1: Install required libraries
!pip install transformers datasets torch sentencepiece
Step 2: Import Libraries
from datasets import load_dataset from transformers import MarianMTModel, MarianTokenizer import torch from transformers import Trainer, TrainingArguments
Step 3: Load the Dataset
dataset = load_dataset("cfilt/iitb-english-hindi")
Check the structure of the dataset
print(dataset)
Step 4: Prepare Tokenizer and Model
model_name = "Helsinki-NLP/opus-mt-en-hi" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name)
Step 5: Preprocess the Dataset
def preprocess_function(examples): # Tokenize the English input and Hindi target model_inputs = tokenizer(examples["en"], truncation=True, padding="max_length", max_length=128) # Tokenize the Hindi target for training with tokenizer.as_target_tokenizer(): labels = tokenizer(examples["hi"], truncation=True, padding="max_length", max_length=128)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
Apply preprocessing to the dataset
tokenized_datasets = dataset.map(preprocess_function, batched=True)
Step 6: Training the Model
training_args = TrainingArguments( output_dir="./results", # output directory for results evaluation_strategy="epoch", # evaluate after every epoch learning_rate=2e-5, # learning rate per_device_train_batch_size=16, # batch size for training per_device_eval_batch_size=16, # batch size for evaluation num_train_epochs=3, # number of training epochs logging_dir="./logs", # directory for storing logs save_steps=500, # save checkpoint every 500 steps )
Initialize the Trainer
trainer = Trainer( model=model, # the pre-trained model args=training_args, # training arguments train_dataset=tokenized_datasets["train"], # training dataset eval_dataset=tokenized_datasets["validation"], # validation dataset )