parking-terrain
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/parking-terrain dataset. It achieves the following results on the evaluation set:
- Loss: 0.0226
- Mean Iou: 0.9423
- Mean Accuracy: 0.9658
- Overall Accuracy: 0.9939
- Accuracy Unlabeled: nan
- Accuracy Sidewalk: 0.9057
- Accuracy Road: 0.9946
- Accuracy Else: 0.9971
- Iou Unlabeled: nan
- Iou Sidewalk: 0.8453
- Iou Road: 0.9880
- Iou Else: 0.9938
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 600
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Sidewalk | Accuracy Road | Accuracy Else | Iou Unlabeled | Iou Sidewalk | Iou Road | Iou Else |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0322 | 5.0 | 20 | 1.1061 | 0.4272 | 0.7323 | 0.7757 | nan | 0.5362 | 0.9371 | 0.7236 | 0.0 | 0.4020 | 0.6015 | 0.7052 |
0.3821 | 10.0 | 40 | 0.3327 | 0.8052 | 0.8879 | 0.9543 | nan | 0.7204 | 0.9958 | 0.9475 | nan | 0.5966 | 0.8762 | 0.9429 |
0.1146 | 15.0 | 60 | 0.0906 | 0.8490 | 0.8945 | 0.9790 | nan | 0.7050 | 0.9951 | 0.9833 | nan | 0.6242 | 0.9436 | 0.9793 |
0.0668 | 20.0 | 80 | 0.0558 | 0.8717 | 0.8905 | 0.9852 | nan | 0.6823 | 0.9966 | 0.9925 | nan | 0.6637 | 0.9670 | 0.9844 |
0.0491 | 25.0 | 100 | 0.0474 | 0.8892 | 0.9372 | 0.9863 | nan | 0.8296 | 0.9916 | 0.9903 | nan | 0.7112 | 0.9708 | 0.9855 |
0.04 | 30.0 | 120 | 0.0366 | 0.9238 | 0.9542 | 0.9899 | nan | 0.8776 | 0.9914 | 0.9937 | nan | 0.8068 | 0.9755 | 0.9890 |
0.0339 | 35.0 | 140 | 0.0332 | 0.9263 | 0.9656 | 0.9906 | nan | 0.9130 | 0.9901 | 0.9937 | nan | 0.8096 | 0.9801 | 0.9891 |
0.0341 | 40.0 | 160 | 0.0310 | 0.9266 | 0.9653 | 0.9905 | nan | 0.9130 | 0.9889 | 0.9941 | nan | 0.8118 | 0.9782 | 0.9897 |
0.0295 | 45.0 | 180 | 0.0253 | 0.9407 | 0.9675 | 0.9923 | nan | 0.9168 | 0.9893 | 0.9963 | nan | 0.8486 | 0.9822 | 0.9913 |
0.058 | 50.0 | 200 | 0.0262 | 0.9312 | 0.9645 | 0.9918 | nan | 0.9076 | 0.9902 | 0.9956 | nan | 0.8211 | 0.9809 | 0.9916 |
0.0242 | 55.0 | 220 | 0.0248 | 0.9377 | 0.9645 | 0.9925 | nan | 0.9051 | 0.9923 | 0.9960 | nan | 0.8376 | 0.9838 | 0.9918 |
0.0217 | 60.0 | 240 | 0.0250 | 0.9324 | 0.9662 | 0.9920 | nan | 0.9128 | 0.9897 | 0.9960 | nan | 0.8229 | 0.9829 | 0.9915 |
0.0223 | 65.0 | 260 | 0.0248 | 0.9339 | 0.9598 | 0.9919 | nan | 0.8920 | 0.9916 | 0.9959 | nan | 0.8281 | 0.9826 | 0.9909 |
0.0206 | 70.0 | 280 | 0.0215 | 0.9411 | 0.9643 | 0.9929 | nan | 0.9038 | 0.9926 | 0.9965 | nan | 0.8466 | 0.9847 | 0.9921 |
0.0194 | 75.0 | 300 | 0.0226 | 0.9351 | 0.9669 | 0.9924 | nan | 0.9126 | 0.9927 | 0.9954 | nan | 0.8289 | 0.9849 | 0.9915 |
0.02 | 80.0 | 320 | 0.0216 | 0.9381 | 0.9626 | 0.9927 | nan | 0.8993 | 0.9918 | 0.9967 | nan | 0.8371 | 0.9854 | 0.9917 |
0.0181 | 85.0 | 340 | 0.0222 | 0.9333 | 0.9653 | 0.9923 | nan | 0.9092 | 0.9907 | 0.9961 | nan | 0.8239 | 0.9846 | 0.9915 |
0.018 | 90.0 | 360 | 0.0225 | 0.9340 | 0.9624 | 0.9924 | nan | 0.8993 | 0.9914 | 0.9964 | nan | 0.8256 | 0.9848 | 0.9916 |
0.0169 | 95.0 | 380 | 0.0207 | 0.9361 | 0.9663 | 0.9928 | nan | 0.9099 | 0.9931 | 0.9958 | nan | 0.8306 | 0.9855 | 0.9922 |
0.0157 | 100.0 | 400 | 0.0209 | 0.9337 | 0.9658 | 0.9926 | nan | 0.9092 | 0.9923 | 0.9960 | nan | 0.8234 | 0.9858 | 0.9921 |
0.0147 | 105.0 | 420 | 0.0229 | 0.9303 | 0.9663 | 0.9921 | nan | 0.9120 | 0.9914 | 0.9954 | nan | 0.8153 | 0.9836 | 0.9918 |
0.014 | 110.0 | 440 | 0.0205 | 0.9370 | 0.9658 | 0.9930 | nan | 0.9082 | 0.9930 | 0.9962 | nan | 0.8328 | 0.9857 | 0.9926 |
0.013 | 115.0 | 460 | 0.0213 | 0.9375 | 0.9613 | 0.9929 | nan | 0.8944 | 0.9928 | 0.9968 | nan | 0.8345 | 0.9857 | 0.9922 |
0.0146 | 120.0 | 480 | 0.0201 | 0.9409 | 0.9605 | 0.9935 | nan | 0.8914 | 0.9922 | 0.9979 | nan | 0.8432 | 0.9866 | 0.9930 |
0.0141 | 125.0 | 500 | 0.0206 | 0.9359 | 0.9669 | 0.9930 | nan | 0.9110 | 0.9937 | 0.9959 | nan | 0.8285 | 0.9864 | 0.9926 |
0.0146 | 130.0 | 520 | 0.0206 | 0.9378 | 0.9629 | 0.9931 | nan | 0.8983 | 0.9942 | 0.9963 | nan | 0.8346 | 0.9863 | 0.9925 |
0.0132 | 135.0 | 540 | 0.0206 | 0.9354 | 0.9614 | 0.9931 | nan | 0.8931 | 0.9947 | 0.9963 | nan | 0.8268 | 0.9868 | 0.9926 |
0.0116 | 140.0 | 560 | 0.0191 | 0.9387 | 0.9655 | 0.9934 | nan | 0.9062 | 0.9937 | 0.9966 | nan | 0.8358 | 0.9870 | 0.9931 |
0.012 | 145.0 | 580 | 0.0206 | 0.9384 | 0.9618 | 0.9933 | nan | 0.8954 | 0.9927 | 0.9973 | nan | 0.8357 | 0.9863 | 0.9930 |
0.0131 | 150.0 | 600 | 0.0206 | 0.9352 | 0.9666 | 0.9930 | nan | 0.9103 | 0.9937 | 0.9959 | nan | 0.8264 | 0.9866 | 0.9926 |
0.0126 | 155.0 | 620 | 0.0205 | 0.9371 | 0.9623 | 0.9931 | nan | 0.8968 | 0.9936 | 0.9966 | nan | 0.8327 | 0.9860 | 0.9927 |
0.011 | 160.0 | 640 | 0.0197 | 0.9389 | 0.9624 | 0.9935 | nan | 0.8958 | 0.9945 | 0.9968 | nan | 0.8367 | 0.9868 | 0.9933 |
0.0124 | 165.0 | 660 | 0.0198 | 0.9378 | 0.9629 | 0.9934 | nan | 0.8982 | 0.9937 | 0.9970 | nan | 0.8331 | 0.9872 | 0.9931 |
0.0119 | 170.0 | 680 | 0.0206 | 0.9362 | 0.9648 | 0.9932 | nan | 0.9037 | 0.9943 | 0.9962 | nan | 0.8284 | 0.9872 | 0.9929 |
0.0121 | 175.0 | 700 | 0.0210 | 0.9360 | 0.9653 | 0.9931 | nan | 0.9064 | 0.9930 | 0.9965 | nan | 0.8285 | 0.9866 | 0.9929 |
0.0123 | 180.0 | 720 | 0.0213 | 0.9340 | 0.9657 | 0.9930 | nan | 0.9069 | 0.9943 | 0.9958 | nan | 0.8229 | 0.9861 | 0.9929 |
0.0098 | 185.0 | 740 | 0.0205 | 0.9386 | 0.9644 | 0.9935 | nan | 0.9026 | 0.9936 | 0.9969 | nan | 0.8353 | 0.9872 | 0.9933 |
0.0112 | 190.0 | 760 | 0.0204 | 0.9385 | 0.9628 | 0.9935 | nan | 0.8974 | 0.9943 | 0.9969 | nan | 0.8350 | 0.9874 | 0.9932 |
0.0104 | 195.0 | 780 | 0.0206 | 0.9368 | 0.9642 | 0.9932 | nan | 0.9021 | 0.9942 | 0.9963 | nan | 0.8310 | 0.9865 | 0.9930 |
0.0112 | 200.0 | 800 | 0.0202 | 0.9397 | 0.9647 | 0.9934 | nan | 0.9044 | 0.9926 | 0.9971 | nan | 0.8394 | 0.9867 | 0.9931 |
0.0109 | 205.0 | 820 | 0.0201 | 0.9389 | 0.9668 | 0.9935 | nan | 0.9099 | 0.9937 | 0.9967 | nan | 0.8361 | 0.9874 | 0.9933 |
0.0104 | 210.0 | 840 | 0.0204 | 0.9394 | 0.9648 | 0.9934 | nan | 0.9041 | 0.9936 | 0.9968 | nan | 0.8383 | 0.9867 | 0.9932 |
0.011 | 215.0 | 860 | 0.0204 | 0.9392 | 0.9640 | 0.9935 | nan | 0.9006 | 0.9946 | 0.9967 | nan | 0.8371 | 0.9871 | 0.9934 |
0.0103 | 220.0 | 880 | 0.0210 | 0.9388 | 0.9642 | 0.9933 | nan | 0.9027 | 0.9929 | 0.9970 | nan | 0.8366 | 0.9867 | 0.9930 |
0.0091 | 225.0 | 900 | 0.0220 | 0.9364 | 0.9646 | 0.9931 | nan | 0.9044 | 0.9927 | 0.9967 | nan | 0.8300 | 0.9865 | 0.9927 |
0.0091 | 230.0 | 920 | 0.0194 | 0.9423 | 0.9656 | 0.9938 | nan | 0.9058 | 0.9940 | 0.9971 | nan | 0.8457 | 0.9874 | 0.9937 |
0.0089 | 235.0 | 940 | 0.0212 | 0.9378 | 0.9646 | 0.9933 | nan | 0.9034 | 0.9937 | 0.9966 | nan | 0.8337 | 0.9868 | 0.9930 |
0.008 | 240.0 | 960 | 0.0201 | 0.9406 | 0.9665 | 0.9936 | nan | 0.9090 | 0.9933 | 0.9970 | nan | 0.8413 | 0.9869 | 0.9936 |
0.0094 | 245.0 | 980 | 0.0211 | 0.9374 | 0.9671 | 0.9932 | nan | 0.9124 | 0.9923 | 0.9966 | nan | 0.8325 | 0.9867 | 0.9929 |
0.0106 | 250.0 | 1000 | 0.0208 | 0.9387 | 0.9669 | 0.9933 | nan | 0.9117 | 0.9921 | 0.9969 | nan | 0.8366 | 0.9864 | 0.9931 |
0.0088 | 255.0 | 1020 | 0.0220 | 0.9354 | 0.9653 | 0.9929 | nan | 0.9062 | 0.9936 | 0.9960 | nan | 0.8271 | 0.9865 | 0.9925 |
0.0091 | 260.0 | 1040 | 0.0205 | 0.9419 | 0.9663 | 0.9937 | nan | 0.9089 | 0.9929 | 0.9972 | nan | 0.8453 | 0.9871 | 0.9934 |
0.0098 | 265.0 | 1060 | 0.0206 | 0.9403 | 0.9647 | 0.9935 | nan | 0.9033 | 0.9943 | 0.9967 | nan | 0.8408 | 0.9870 | 0.9932 |
0.0105 | 270.0 | 1080 | 0.0203 | 0.9398 | 0.9662 | 0.9935 | nan | 0.9083 | 0.9934 | 0.9968 | nan | 0.8392 | 0.9868 | 0.9933 |
0.0088 | 275.0 | 1100 | 0.0209 | 0.9392 | 0.9655 | 0.9935 | nan | 0.9057 | 0.9941 | 0.9966 | nan | 0.8373 | 0.9872 | 0.9932 |
0.0089 | 280.0 | 1120 | 0.0216 | 0.9407 | 0.9659 | 0.9935 | nan | 0.9078 | 0.9928 | 0.9971 | nan | 0.8421 | 0.9867 | 0.9932 |
0.0088 | 285.0 | 1140 | 0.0204 | 0.9390 | 0.9682 | 0.9934 | nan | 0.9150 | 0.9933 | 0.9964 | nan | 0.8370 | 0.9868 | 0.9931 |
0.0088 | 290.0 | 1160 | 0.0215 | 0.9373 | 0.9642 | 0.9934 | nan | 0.9013 | 0.9951 | 0.9963 | nan | 0.8311 | 0.9876 | 0.9931 |
0.0086 | 295.0 | 1180 | 0.0216 | 0.9414 | 0.9648 | 0.9936 | nan | 0.9040 | 0.9933 | 0.9972 | nan | 0.8438 | 0.9869 | 0.9933 |
0.0081 | 300.0 | 1200 | 0.0207 | 0.9404 | 0.9669 | 0.9935 | nan | 0.9106 | 0.9934 | 0.9968 | nan | 0.8410 | 0.9871 | 0.9933 |
0.009 | 305.0 | 1220 | 0.0208 | 0.9407 | 0.9660 | 0.9936 | nan | 0.9072 | 0.9939 | 0.9968 | nan | 0.8418 | 0.9872 | 0.9933 |
0.0083 | 310.0 | 1240 | 0.0210 | 0.9416 | 0.9658 | 0.9936 | nan | 0.9069 | 0.9933 | 0.9971 | nan | 0.8444 | 0.9870 | 0.9934 |
0.0094 | 315.0 | 1260 | 0.0206 | 0.9417 | 0.9649 | 0.9938 | nan | 0.9031 | 0.9946 | 0.9969 | nan | 0.8441 | 0.9873 | 0.9936 |
0.0084 | 320.0 | 1280 | 0.0205 | 0.9428 | 0.9645 | 0.9939 | nan | 0.9017 | 0.9946 | 0.9972 | nan | 0.8471 | 0.9875 | 0.9938 |
0.0085 | 325.0 | 1300 | 0.0218 | 0.9384 | 0.9666 | 0.9934 | nan | 0.9093 | 0.9940 | 0.9964 | nan | 0.8348 | 0.9872 | 0.9931 |
0.0089 | 330.0 | 1320 | 0.0207 | 0.9419 | 0.9663 | 0.9937 | nan | 0.9079 | 0.9943 | 0.9968 | nan | 0.8444 | 0.9878 | 0.9934 |
0.008 | 335.0 | 1340 | 0.0212 | 0.9420 | 0.9653 | 0.9938 | nan | 0.9045 | 0.9942 | 0.9971 | nan | 0.8446 | 0.9877 | 0.9936 |
0.0076 | 340.0 | 1360 | 0.0211 | 0.9428 | 0.9652 | 0.9939 | nan | 0.9041 | 0.9945 | 0.9972 | nan | 0.8470 | 0.9877 | 0.9938 |
0.0088 | 345.0 | 1380 | 0.0210 | 0.9428 | 0.9654 | 0.9939 | nan | 0.9044 | 0.9948 | 0.9971 | nan | 0.8468 | 0.9880 | 0.9937 |
0.0084 | 350.0 | 1400 | 0.0213 | 0.9412 | 0.9660 | 0.9937 | nan | 0.9068 | 0.9943 | 0.9968 | nan | 0.8425 | 0.9877 | 0.9934 |
0.0077 | 355.0 | 1420 | 0.0215 | 0.9400 | 0.9645 | 0.9937 | nan | 0.9017 | 0.9952 | 0.9966 | nan | 0.8389 | 0.9877 | 0.9935 |
0.0069 | 360.0 | 1440 | 0.0210 | 0.9414 | 0.9664 | 0.9937 | nan | 0.9086 | 0.9936 | 0.9971 | nan | 0.8432 | 0.9874 | 0.9936 |
0.0071 | 365.0 | 1460 | 0.0204 | 0.9436 | 0.9663 | 0.9939 | nan | 0.9083 | 0.9930 | 0.9975 | nan | 0.8496 | 0.9874 | 0.9937 |
0.0079 | 370.0 | 1480 | 0.0208 | 0.9425 | 0.9660 | 0.9939 | nan | 0.9072 | 0.9935 | 0.9974 | nan | 0.8462 | 0.9876 | 0.9937 |
0.0085 | 375.0 | 1500 | 0.0210 | 0.9421 | 0.9661 | 0.9938 | nan | 0.9078 | 0.9934 | 0.9973 | nan | 0.8452 | 0.9875 | 0.9936 |
0.0086 | 380.0 | 1520 | 0.0208 | 0.9425 | 0.9662 | 0.9939 | nan | 0.9078 | 0.9936 | 0.9973 | nan | 0.8462 | 0.9878 | 0.9936 |
0.0076 | 385.0 | 1540 | 0.0218 | 0.9409 | 0.9655 | 0.9936 | nan | 0.9062 | 0.9933 | 0.9971 | nan | 0.8420 | 0.9875 | 0.9933 |
0.0077 | 390.0 | 1560 | 0.0214 | 0.9419 | 0.9656 | 0.9938 | nan | 0.9052 | 0.9945 | 0.9969 | nan | 0.8443 | 0.9879 | 0.9935 |
0.0077 | 395.0 | 1580 | 0.0216 | 0.9405 | 0.9663 | 0.9937 | nan | 0.9075 | 0.9948 | 0.9966 | nan | 0.8400 | 0.9879 | 0.9935 |
0.008 | 400.0 | 1600 | 0.0212 | 0.9424 | 0.9658 | 0.9939 | nan | 0.9059 | 0.9945 | 0.9970 | nan | 0.8458 | 0.9879 | 0.9937 |
0.0071 | 405.0 | 1620 | 0.0213 | 0.9412 | 0.9664 | 0.9938 | nan | 0.9078 | 0.9945 | 0.9968 | nan | 0.8423 | 0.9877 | 0.9936 |
0.0082 | 410.0 | 1640 | 0.0218 | 0.9419 | 0.9659 | 0.9938 | nan | 0.9064 | 0.9944 | 0.9970 | nan | 0.8444 | 0.9876 | 0.9936 |
0.0077 | 415.0 | 1660 | 0.0219 | 0.9406 | 0.9664 | 0.9937 | nan | 0.9085 | 0.9937 | 0.9970 | nan | 0.8408 | 0.9875 | 0.9936 |
0.0065 | 420.0 | 1680 | 0.0216 | 0.9413 | 0.9656 | 0.9938 | nan | 0.9052 | 0.9947 | 0.9969 | nan | 0.8424 | 0.9877 | 0.9937 |
0.0075 | 425.0 | 1700 | 0.0216 | 0.9417 | 0.9650 | 0.9939 | nan | 0.9028 | 0.9952 | 0.9969 | nan | 0.8434 | 0.9881 | 0.9938 |
0.0065 | 430.0 | 1720 | 0.0222 | 0.9404 | 0.9662 | 0.9937 | nan | 0.9076 | 0.9941 | 0.9969 | nan | 0.8401 | 0.9877 | 0.9935 |
0.008 | 435.0 | 1740 | 0.0226 | 0.9396 | 0.9662 | 0.9936 | nan | 0.9076 | 0.9945 | 0.9966 | nan | 0.8374 | 0.9879 | 0.9934 |
0.0083 | 440.0 | 1760 | 0.0219 | 0.9421 | 0.9659 | 0.9939 | nan | 0.9058 | 0.9949 | 0.9969 | nan | 0.8446 | 0.9879 | 0.9938 |
0.0072 | 445.0 | 1780 | 0.0220 | 0.9412 | 0.9666 | 0.9938 | nan | 0.9088 | 0.9942 | 0.9969 | nan | 0.8424 | 0.9875 | 0.9937 |
0.0074 | 450.0 | 1800 | 0.0224 | 0.9411 | 0.9647 | 0.9939 | nan | 0.9021 | 0.9952 | 0.9969 | nan | 0.8418 | 0.9878 | 0.9938 |
0.0069 | 455.0 | 1820 | 0.0219 | 0.9431 | 0.9662 | 0.9940 | nan | 0.9072 | 0.9944 | 0.9971 | nan | 0.8477 | 0.9877 | 0.9939 |
0.0072 | 460.0 | 1840 | 0.0221 | 0.9419 | 0.9665 | 0.9938 | nan | 0.9086 | 0.9939 | 0.9970 | nan | 0.8443 | 0.9877 | 0.9936 |
0.0078 | 465.0 | 1860 | 0.0222 | 0.9429 | 0.9646 | 0.9940 | nan | 0.9019 | 0.9945 | 0.9973 | nan | 0.8472 | 0.9877 | 0.9939 |
0.0072 | 470.0 | 1880 | 0.0230 | 0.9411 | 0.9655 | 0.9938 | nan | 0.9050 | 0.9946 | 0.9969 | nan | 0.8421 | 0.9876 | 0.9937 |
0.0076 | 475.0 | 1900 | 0.0223 | 0.9413 | 0.9657 | 0.9938 | nan | 0.9055 | 0.9946 | 0.9968 | nan | 0.8426 | 0.9877 | 0.9936 |
0.0072 | 480.0 | 1920 | 0.0221 | 0.9413 | 0.9665 | 0.9938 | nan | 0.9081 | 0.9947 | 0.9968 | nan | 0.8425 | 0.9879 | 0.9936 |
0.0073 | 485.0 | 1940 | 0.0225 | 0.9420 | 0.9664 | 0.9938 | nan | 0.9083 | 0.9936 | 0.9972 | nan | 0.8449 | 0.9875 | 0.9936 |
0.0079 | 490.0 | 1960 | 0.0226 | 0.9415 | 0.9664 | 0.9937 | nan | 0.9083 | 0.9939 | 0.9969 | nan | 0.8437 | 0.9875 | 0.9934 |
0.007 | 495.0 | 1980 | 0.0225 | 0.9415 | 0.9657 | 0.9937 | nan | 0.9059 | 0.9941 | 0.9970 | nan | 0.8434 | 0.9875 | 0.9935 |
0.0072 | 500.0 | 2000 | 0.0224 | 0.9416 | 0.9656 | 0.9938 | nan | 0.9055 | 0.9945 | 0.9969 | nan | 0.8435 | 0.9878 | 0.9935 |
0.0068 | 505.0 | 2020 | 0.0225 | 0.9413 | 0.9664 | 0.9938 | nan | 0.9081 | 0.9942 | 0.9969 | nan | 0.8428 | 0.9876 | 0.9936 |
0.0061 | 510.0 | 2040 | 0.0226 | 0.9431 | 0.9658 | 0.9939 | nan | 0.9065 | 0.9937 | 0.9973 | nan | 0.8481 | 0.9874 | 0.9937 |
0.0066 | 515.0 | 2060 | 0.0225 | 0.9419 | 0.9648 | 0.9939 | nan | 0.9021 | 0.9952 | 0.9969 | nan | 0.8441 | 0.9877 | 0.9937 |
0.0089 | 520.0 | 2080 | 0.0222 | 0.9433 | 0.9658 | 0.9939 | nan | 0.9059 | 0.9942 | 0.9972 | nan | 0.8486 | 0.9876 | 0.9937 |
0.0066 | 525.0 | 2100 | 0.0229 | 0.9415 | 0.9662 | 0.9938 | nan | 0.9075 | 0.9940 | 0.9970 | nan | 0.8434 | 0.9875 | 0.9936 |
0.0075 | 530.0 | 2120 | 0.0233 | 0.9402 | 0.9659 | 0.9937 | nan | 0.9068 | 0.9940 | 0.9969 | nan | 0.8396 | 0.9875 | 0.9935 |
0.0075 | 535.0 | 2140 | 0.0232 | 0.9407 | 0.9656 | 0.9938 | nan | 0.9054 | 0.9944 | 0.9969 | nan | 0.8409 | 0.9877 | 0.9936 |
0.007 | 540.0 | 2160 | 0.0229 | 0.9415 | 0.9662 | 0.9938 | nan | 0.9071 | 0.9946 | 0.9969 | nan | 0.8429 | 0.9880 | 0.9936 |
0.0071 | 545.0 | 2180 | 0.0224 | 0.9424 | 0.9658 | 0.9940 | nan | 0.9055 | 0.9949 | 0.9970 | nan | 0.8451 | 0.9883 | 0.9938 |
0.0069 | 550.0 | 2200 | 0.0225 | 0.9422 | 0.9663 | 0.9939 | nan | 0.9076 | 0.9941 | 0.9971 | nan | 0.8452 | 0.9878 | 0.9937 |
0.0067 | 555.0 | 2220 | 0.0223 | 0.9414 | 0.9661 | 0.9938 | nan | 0.9069 | 0.9946 | 0.9969 | nan | 0.8427 | 0.9880 | 0.9936 |
0.0066 | 560.0 | 2240 | 0.0227 | 0.9420 | 0.9659 | 0.9939 | nan | 0.9058 | 0.9948 | 0.9969 | nan | 0.8441 | 0.9880 | 0.9937 |
0.0069 | 565.0 | 2260 | 0.0230 | 0.9410 | 0.9660 | 0.9938 | nan | 0.9066 | 0.9945 | 0.9968 | nan | 0.8416 | 0.9878 | 0.9936 |
0.0065 | 570.0 | 2280 | 0.0227 | 0.9417 | 0.9661 | 0.9939 | nan | 0.9065 | 0.9949 | 0.9969 | nan | 0.8433 | 0.9881 | 0.9937 |
0.0069 | 575.0 | 2300 | 0.0226 | 0.9424 | 0.9664 | 0.9939 | nan | 0.9076 | 0.9944 | 0.9970 | nan | 0.8455 | 0.9879 | 0.9937 |
0.0065 | 580.0 | 2320 | 0.0227 | 0.9423 | 0.9661 | 0.9939 | nan | 0.9069 | 0.9945 | 0.9970 | nan | 0.8453 | 0.9880 | 0.9937 |
0.0069 | 585.0 | 2340 | 0.0226 | 0.9422 | 0.9661 | 0.9939 | nan | 0.9066 | 0.9947 | 0.9970 | nan | 0.8449 | 0.9880 | 0.9937 |
0.0062 | 590.0 | 2360 | 0.0226 | 0.9422 | 0.9661 | 0.9939 | nan | 0.9066 | 0.9945 | 0.9970 | nan | 0.8449 | 0.9879 | 0.9937 |
0.0068 | 595.0 | 2380 | 0.0227 | 0.9418 | 0.9660 | 0.9939 | nan | 0.9066 | 0.9944 | 0.9970 | nan | 0.8439 | 0.9879 | 0.9937 |
0.0073 | 600.0 | 2400 | 0.0226 | 0.9423 | 0.9658 | 0.9939 | nan | 0.9057 | 0.9946 | 0.9971 | nan | 0.8453 | 0.9880 | 0.9938 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.