parking-terrain

This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/parking-terrain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0226
  • Mean Iou: 0.9423
  • Mean Accuracy: 0.9658
  • Overall Accuracy: 0.9939
  • Accuracy Unlabeled: nan
  • Accuracy Sidewalk: 0.9057
  • Accuracy Road: 0.9946
  • Accuracy Else: 0.9971
  • Iou Unlabeled: nan
  • Iou Sidewalk: 0.8453
  • Iou Road: 0.9880
  • Iou Else: 0.9938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 600

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Sidewalk Accuracy Road Accuracy Else Iou Unlabeled Iou Sidewalk Iou Road Iou Else
1.0322 5.0 20 1.1061 0.4272 0.7323 0.7757 nan 0.5362 0.9371 0.7236 0.0 0.4020 0.6015 0.7052
0.3821 10.0 40 0.3327 0.8052 0.8879 0.9543 nan 0.7204 0.9958 0.9475 nan 0.5966 0.8762 0.9429
0.1146 15.0 60 0.0906 0.8490 0.8945 0.9790 nan 0.7050 0.9951 0.9833 nan 0.6242 0.9436 0.9793
0.0668 20.0 80 0.0558 0.8717 0.8905 0.9852 nan 0.6823 0.9966 0.9925 nan 0.6637 0.9670 0.9844
0.0491 25.0 100 0.0474 0.8892 0.9372 0.9863 nan 0.8296 0.9916 0.9903 nan 0.7112 0.9708 0.9855
0.04 30.0 120 0.0366 0.9238 0.9542 0.9899 nan 0.8776 0.9914 0.9937 nan 0.8068 0.9755 0.9890
0.0339 35.0 140 0.0332 0.9263 0.9656 0.9906 nan 0.9130 0.9901 0.9937 nan 0.8096 0.9801 0.9891
0.0341 40.0 160 0.0310 0.9266 0.9653 0.9905 nan 0.9130 0.9889 0.9941 nan 0.8118 0.9782 0.9897
0.0295 45.0 180 0.0253 0.9407 0.9675 0.9923 nan 0.9168 0.9893 0.9963 nan 0.8486 0.9822 0.9913
0.058 50.0 200 0.0262 0.9312 0.9645 0.9918 nan 0.9076 0.9902 0.9956 nan 0.8211 0.9809 0.9916
0.0242 55.0 220 0.0248 0.9377 0.9645 0.9925 nan 0.9051 0.9923 0.9960 nan 0.8376 0.9838 0.9918
0.0217 60.0 240 0.0250 0.9324 0.9662 0.9920 nan 0.9128 0.9897 0.9960 nan 0.8229 0.9829 0.9915
0.0223 65.0 260 0.0248 0.9339 0.9598 0.9919 nan 0.8920 0.9916 0.9959 nan 0.8281 0.9826 0.9909
0.0206 70.0 280 0.0215 0.9411 0.9643 0.9929 nan 0.9038 0.9926 0.9965 nan 0.8466 0.9847 0.9921
0.0194 75.0 300 0.0226 0.9351 0.9669 0.9924 nan 0.9126 0.9927 0.9954 nan 0.8289 0.9849 0.9915
0.02 80.0 320 0.0216 0.9381 0.9626 0.9927 nan 0.8993 0.9918 0.9967 nan 0.8371 0.9854 0.9917
0.0181 85.0 340 0.0222 0.9333 0.9653 0.9923 nan 0.9092 0.9907 0.9961 nan 0.8239 0.9846 0.9915
0.018 90.0 360 0.0225 0.9340 0.9624 0.9924 nan 0.8993 0.9914 0.9964 nan 0.8256 0.9848 0.9916
0.0169 95.0 380 0.0207 0.9361 0.9663 0.9928 nan 0.9099 0.9931 0.9958 nan 0.8306 0.9855 0.9922
0.0157 100.0 400 0.0209 0.9337 0.9658 0.9926 nan 0.9092 0.9923 0.9960 nan 0.8234 0.9858 0.9921
0.0147 105.0 420 0.0229 0.9303 0.9663 0.9921 nan 0.9120 0.9914 0.9954 nan 0.8153 0.9836 0.9918
0.014 110.0 440 0.0205 0.9370 0.9658 0.9930 nan 0.9082 0.9930 0.9962 nan 0.8328 0.9857 0.9926
0.013 115.0 460 0.0213 0.9375 0.9613 0.9929 nan 0.8944 0.9928 0.9968 nan 0.8345 0.9857 0.9922
0.0146 120.0 480 0.0201 0.9409 0.9605 0.9935 nan 0.8914 0.9922 0.9979 nan 0.8432 0.9866 0.9930
0.0141 125.0 500 0.0206 0.9359 0.9669 0.9930 nan 0.9110 0.9937 0.9959 nan 0.8285 0.9864 0.9926
0.0146 130.0 520 0.0206 0.9378 0.9629 0.9931 nan 0.8983 0.9942 0.9963 nan 0.8346 0.9863 0.9925
0.0132 135.0 540 0.0206 0.9354 0.9614 0.9931 nan 0.8931 0.9947 0.9963 nan 0.8268 0.9868 0.9926
0.0116 140.0 560 0.0191 0.9387 0.9655 0.9934 nan 0.9062 0.9937 0.9966 nan 0.8358 0.9870 0.9931
0.012 145.0 580 0.0206 0.9384 0.9618 0.9933 nan 0.8954 0.9927 0.9973 nan 0.8357 0.9863 0.9930
0.0131 150.0 600 0.0206 0.9352 0.9666 0.9930 nan 0.9103 0.9937 0.9959 nan 0.8264 0.9866 0.9926
0.0126 155.0 620 0.0205 0.9371 0.9623 0.9931 nan 0.8968 0.9936 0.9966 nan 0.8327 0.9860 0.9927
0.011 160.0 640 0.0197 0.9389 0.9624 0.9935 nan 0.8958 0.9945 0.9968 nan 0.8367 0.9868 0.9933
0.0124 165.0 660 0.0198 0.9378 0.9629 0.9934 nan 0.8982 0.9937 0.9970 nan 0.8331 0.9872 0.9931
0.0119 170.0 680 0.0206 0.9362 0.9648 0.9932 nan 0.9037 0.9943 0.9962 nan 0.8284 0.9872 0.9929
0.0121 175.0 700 0.0210 0.9360 0.9653 0.9931 nan 0.9064 0.9930 0.9965 nan 0.8285 0.9866 0.9929
0.0123 180.0 720 0.0213 0.9340 0.9657 0.9930 nan 0.9069 0.9943 0.9958 nan 0.8229 0.9861 0.9929
0.0098 185.0 740 0.0205 0.9386 0.9644 0.9935 nan 0.9026 0.9936 0.9969 nan 0.8353 0.9872 0.9933
0.0112 190.0 760 0.0204 0.9385 0.9628 0.9935 nan 0.8974 0.9943 0.9969 nan 0.8350 0.9874 0.9932
0.0104 195.0 780 0.0206 0.9368 0.9642 0.9932 nan 0.9021 0.9942 0.9963 nan 0.8310 0.9865 0.9930
0.0112 200.0 800 0.0202 0.9397 0.9647 0.9934 nan 0.9044 0.9926 0.9971 nan 0.8394 0.9867 0.9931
0.0109 205.0 820 0.0201 0.9389 0.9668 0.9935 nan 0.9099 0.9937 0.9967 nan 0.8361 0.9874 0.9933
0.0104 210.0 840 0.0204 0.9394 0.9648 0.9934 nan 0.9041 0.9936 0.9968 nan 0.8383 0.9867 0.9932
0.011 215.0 860 0.0204 0.9392 0.9640 0.9935 nan 0.9006 0.9946 0.9967 nan 0.8371 0.9871 0.9934
0.0103 220.0 880 0.0210 0.9388 0.9642 0.9933 nan 0.9027 0.9929 0.9970 nan 0.8366 0.9867 0.9930
0.0091 225.0 900 0.0220 0.9364 0.9646 0.9931 nan 0.9044 0.9927 0.9967 nan 0.8300 0.9865 0.9927
0.0091 230.0 920 0.0194 0.9423 0.9656 0.9938 nan 0.9058 0.9940 0.9971 nan 0.8457 0.9874 0.9937
0.0089 235.0 940 0.0212 0.9378 0.9646 0.9933 nan 0.9034 0.9937 0.9966 nan 0.8337 0.9868 0.9930
0.008 240.0 960 0.0201 0.9406 0.9665 0.9936 nan 0.9090 0.9933 0.9970 nan 0.8413 0.9869 0.9936
0.0094 245.0 980 0.0211 0.9374 0.9671 0.9932 nan 0.9124 0.9923 0.9966 nan 0.8325 0.9867 0.9929
0.0106 250.0 1000 0.0208 0.9387 0.9669 0.9933 nan 0.9117 0.9921 0.9969 nan 0.8366 0.9864 0.9931
0.0088 255.0 1020 0.0220 0.9354 0.9653 0.9929 nan 0.9062 0.9936 0.9960 nan 0.8271 0.9865 0.9925
0.0091 260.0 1040 0.0205 0.9419 0.9663 0.9937 nan 0.9089 0.9929 0.9972 nan 0.8453 0.9871 0.9934
0.0098 265.0 1060 0.0206 0.9403 0.9647 0.9935 nan 0.9033 0.9943 0.9967 nan 0.8408 0.9870 0.9932
0.0105 270.0 1080 0.0203 0.9398 0.9662 0.9935 nan 0.9083 0.9934 0.9968 nan 0.8392 0.9868 0.9933
0.0088 275.0 1100 0.0209 0.9392 0.9655 0.9935 nan 0.9057 0.9941 0.9966 nan 0.8373 0.9872 0.9932
0.0089 280.0 1120 0.0216 0.9407 0.9659 0.9935 nan 0.9078 0.9928 0.9971 nan 0.8421 0.9867 0.9932
0.0088 285.0 1140 0.0204 0.9390 0.9682 0.9934 nan 0.9150 0.9933 0.9964 nan 0.8370 0.9868 0.9931
0.0088 290.0 1160 0.0215 0.9373 0.9642 0.9934 nan 0.9013 0.9951 0.9963 nan 0.8311 0.9876 0.9931
0.0086 295.0 1180 0.0216 0.9414 0.9648 0.9936 nan 0.9040 0.9933 0.9972 nan 0.8438 0.9869 0.9933
0.0081 300.0 1200 0.0207 0.9404 0.9669 0.9935 nan 0.9106 0.9934 0.9968 nan 0.8410 0.9871 0.9933
0.009 305.0 1220 0.0208 0.9407 0.9660 0.9936 nan 0.9072 0.9939 0.9968 nan 0.8418 0.9872 0.9933
0.0083 310.0 1240 0.0210 0.9416 0.9658 0.9936 nan 0.9069 0.9933 0.9971 nan 0.8444 0.9870 0.9934
0.0094 315.0 1260 0.0206 0.9417 0.9649 0.9938 nan 0.9031 0.9946 0.9969 nan 0.8441 0.9873 0.9936
0.0084 320.0 1280 0.0205 0.9428 0.9645 0.9939 nan 0.9017 0.9946 0.9972 nan 0.8471 0.9875 0.9938
0.0085 325.0 1300 0.0218 0.9384 0.9666 0.9934 nan 0.9093 0.9940 0.9964 nan 0.8348 0.9872 0.9931
0.0089 330.0 1320 0.0207 0.9419 0.9663 0.9937 nan 0.9079 0.9943 0.9968 nan 0.8444 0.9878 0.9934
0.008 335.0 1340 0.0212 0.9420 0.9653 0.9938 nan 0.9045 0.9942 0.9971 nan 0.8446 0.9877 0.9936
0.0076 340.0 1360 0.0211 0.9428 0.9652 0.9939 nan 0.9041 0.9945 0.9972 nan 0.8470 0.9877 0.9938
0.0088 345.0 1380 0.0210 0.9428 0.9654 0.9939 nan 0.9044 0.9948 0.9971 nan 0.8468 0.9880 0.9937
0.0084 350.0 1400 0.0213 0.9412 0.9660 0.9937 nan 0.9068 0.9943 0.9968 nan 0.8425 0.9877 0.9934
0.0077 355.0 1420 0.0215 0.9400 0.9645 0.9937 nan 0.9017 0.9952 0.9966 nan 0.8389 0.9877 0.9935
0.0069 360.0 1440 0.0210 0.9414 0.9664 0.9937 nan 0.9086 0.9936 0.9971 nan 0.8432 0.9874 0.9936
0.0071 365.0 1460 0.0204 0.9436 0.9663 0.9939 nan 0.9083 0.9930 0.9975 nan 0.8496 0.9874 0.9937
0.0079 370.0 1480 0.0208 0.9425 0.9660 0.9939 nan 0.9072 0.9935 0.9974 nan 0.8462 0.9876 0.9937
0.0085 375.0 1500 0.0210 0.9421 0.9661 0.9938 nan 0.9078 0.9934 0.9973 nan 0.8452 0.9875 0.9936
0.0086 380.0 1520 0.0208 0.9425 0.9662 0.9939 nan 0.9078 0.9936 0.9973 nan 0.8462 0.9878 0.9936
0.0076 385.0 1540 0.0218 0.9409 0.9655 0.9936 nan 0.9062 0.9933 0.9971 nan 0.8420 0.9875 0.9933
0.0077 390.0 1560 0.0214 0.9419 0.9656 0.9938 nan 0.9052 0.9945 0.9969 nan 0.8443 0.9879 0.9935
0.0077 395.0 1580 0.0216 0.9405 0.9663 0.9937 nan 0.9075 0.9948 0.9966 nan 0.8400 0.9879 0.9935
0.008 400.0 1600 0.0212 0.9424 0.9658 0.9939 nan 0.9059 0.9945 0.9970 nan 0.8458 0.9879 0.9937
0.0071 405.0 1620 0.0213 0.9412 0.9664 0.9938 nan 0.9078 0.9945 0.9968 nan 0.8423 0.9877 0.9936
0.0082 410.0 1640 0.0218 0.9419 0.9659 0.9938 nan 0.9064 0.9944 0.9970 nan 0.8444 0.9876 0.9936
0.0077 415.0 1660 0.0219 0.9406 0.9664 0.9937 nan 0.9085 0.9937 0.9970 nan 0.8408 0.9875 0.9936
0.0065 420.0 1680 0.0216 0.9413 0.9656 0.9938 nan 0.9052 0.9947 0.9969 nan 0.8424 0.9877 0.9937
0.0075 425.0 1700 0.0216 0.9417 0.9650 0.9939 nan 0.9028 0.9952 0.9969 nan 0.8434 0.9881 0.9938
0.0065 430.0 1720 0.0222 0.9404 0.9662 0.9937 nan 0.9076 0.9941 0.9969 nan 0.8401 0.9877 0.9935
0.008 435.0 1740 0.0226 0.9396 0.9662 0.9936 nan 0.9076 0.9945 0.9966 nan 0.8374 0.9879 0.9934
0.0083 440.0 1760 0.0219 0.9421 0.9659 0.9939 nan 0.9058 0.9949 0.9969 nan 0.8446 0.9879 0.9938
0.0072 445.0 1780 0.0220 0.9412 0.9666 0.9938 nan 0.9088 0.9942 0.9969 nan 0.8424 0.9875 0.9937
0.0074 450.0 1800 0.0224 0.9411 0.9647 0.9939 nan 0.9021 0.9952 0.9969 nan 0.8418 0.9878 0.9938
0.0069 455.0 1820 0.0219 0.9431 0.9662 0.9940 nan 0.9072 0.9944 0.9971 nan 0.8477 0.9877 0.9939
0.0072 460.0 1840 0.0221 0.9419 0.9665 0.9938 nan 0.9086 0.9939 0.9970 nan 0.8443 0.9877 0.9936
0.0078 465.0 1860 0.0222 0.9429 0.9646 0.9940 nan 0.9019 0.9945 0.9973 nan 0.8472 0.9877 0.9939
0.0072 470.0 1880 0.0230 0.9411 0.9655 0.9938 nan 0.9050 0.9946 0.9969 nan 0.8421 0.9876 0.9937
0.0076 475.0 1900 0.0223 0.9413 0.9657 0.9938 nan 0.9055 0.9946 0.9968 nan 0.8426 0.9877 0.9936
0.0072 480.0 1920 0.0221 0.9413 0.9665 0.9938 nan 0.9081 0.9947 0.9968 nan 0.8425 0.9879 0.9936
0.0073 485.0 1940 0.0225 0.9420 0.9664 0.9938 nan 0.9083 0.9936 0.9972 nan 0.8449 0.9875 0.9936
0.0079 490.0 1960 0.0226 0.9415 0.9664 0.9937 nan 0.9083 0.9939 0.9969 nan 0.8437 0.9875 0.9934
0.007 495.0 1980 0.0225 0.9415 0.9657 0.9937 nan 0.9059 0.9941 0.9970 nan 0.8434 0.9875 0.9935
0.0072 500.0 2000 0.0224 0.9416 0.9656 0.9938 nan 0.9055 0.9945 0.9969 nan 0.8435 0.9878 0.9935
0.0068 505.0 2020 0.0225 0.9413 0.9664 0.9938 nan 0.9081 0.9942 0.9969 nan 0.8428 0.9876 0.9936
0.0061 510.0 2040 0.0226 0.9431 0.9658 0.9939 nan 0.9065 0.9937 0.9973 nan 0.8481 0.9874 0.9937
0.0066 515.0 2060 0.0225 0.9419 0.9648 0.9939 nan 0.9021 0.9952 0.9969 nan 0.8441 0.9877 0.9937
0.0089 520.0 2080 0.0222 0.9433 0.9658 0.9939 nan 0.9059 0.9942 0.9972 nan 0.8486 0.9876 0.9937
0.0066 525.0 2100 0.0229 0.9415 0.9662 0.9938 nan 0.9075 0.9940 0.9970 nan 0.8434 0.9875 0.9936
0.0075 530.0 2120 0.0233 0.9402 0.9659 0.9937 nan 0.9068 0.9940 0.9969 nan 0.8396 0.9875 0.9935
0.0075 535.0 2140 0.0232 0.9407 0.9656 0.9938 nan 0.9054 0.9944 0.9969 nan 0.8409 0.9877 0.9936
0.007 540.0 2160 0.0229 0.9415 0.9662 0.9938 nan 0.9071 0.9946 0.9969 nan 0.8429 0.9880 0.9936
0.0071 545.0 2180 0.0224 0.9424 0.9658 0.9940 nan 0.9055 0.9949 0.9970 nan 0.8451 0.9883 0.9938
0.0069 550.0 2200 0.0225 0.9422 0.9663 0.9939 nan 0.9076 0.9941 0.9971 nan 0.8452 0.9878 0.9937
0.0067 555.0 2220 0.0223 0.9414 0.9661 0.9938 nan 0.9069 0.9946 0.9969 nan 0.8427 0.9880 0.9936
0.0066 560.0 2240 0.0227 0.9420 0.9659 0.9939 nan 0.9058 0.9948 0.9969 nan 0.8441 0.9880 0.9937
0.0069 565.0 2260 0.0230 0.9410 0.9660 0.9938 nan 0.9066 0.9945 0.9968 nan 0.8416 0.9878 0.9936
0.0065 570.0 2280 0.0227 0.9417 0.9661 0.9939 nan 0.9065 0.9949 0.9969 nan 0.8433 0.9881 0.9937
0.0069 575.0 2300 0.0226 0.9424 0.9664 0.9939 nan 0.9076 0.9944 0.9970 nan 0.8455 0.9879 0.9937
0.0065 580.0 2320 0.0227 0.9423 0.9661 0.9939 nan 0.9069 0.9945 0.9970 nan 0.8453 0.9880 0.9937
0.0069 585.0 2340 0.0226 0.9422 0.9661 0.9939 nan 0.9066 0.9947 0.9970 nan 0.8449 0.9880 0.9937
0.0062 590.0 2360 0.0226 0.9422 0.9661 0.9939 nan 0.9066 0.9945 0.9970 nan 0.8449 0.9879 0.9937
0.0068 595.0 2380 0.0227 0.9418 0.9660 0.9939 nan 0.9066 0.9944 0.9970 nan 0.8439 0.9879 0.9937
0.0073 600.0 2400 0.0226 0.9423 0.9658 0.9939 nan 0.9057 0.9946 0.9971 nan 0.8453 0.9880 0.9938

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.