dropoff-utcustom-train-SF-RGBD-b5_7

This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1296
  • Mean Iou: 0.6242
  • Mean Accuracy: 0.6623
  • Overall Accuracy: 0.9652
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.3319
  • Accuracy Undropoff: 0.9926
  • Iou Unlabeled: nan
  • Iou Dropoff: 0.2838
  • Iou Undropoff: 0.9647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
0.9278 5.0 10 0.8454 0.3197 0.5545 0.8788 nan 0.2009 0.9082 0.0 0.0807 0.8785
0.5551 10.0 20 0.4668 0.3221 0.5042 0.9540 nan 0.0135 0.9948 0.0 0.0122 0.9540
0.3667 15.0 30 0.3354 0.3218 0.5035 0.9570 nan 0.0088 0.9982 0.0 0.0085 0.9570
0.2402 20.0 40 0.2678 0.5985 0.6492 0.9587 nan 0.3116 0.9868 nan 0.2388 0.9582
0.1562 25.0 50 0.2101 0.6240 0.6719 0.9631 nan 0.3544 0.9895 nan 0.2854 0.9625
0.1159 30.0 60 0.1704 0.6262 0.6641 0.9654 nan 0.3353 0.9928 nan 0.2875 0.9650
0.0869 35.0 70 0.1443 0.6380 0.6817 0.9657 nan 0.3720 0.9915 nan 0.3108 0.9652
0.079 40.0 80 0.1350 0.6072 0.6360 0.9654 nan 0.2766 0.9953 nan 0.2494 0.9650
0.0647 45.0 90 0.1370 0.5800 0.6031 0.9643 nan 0.2090 0.9971 nan 0.1959 0.9640
0.0587 50.0 100 0.1336 0.6276 0.6796 0.9628 nan 0.3707 0.9885 nan 0.2929 0.9622
0.0575 55.0 110 0.1313 0.6189 0.6531 0.9654 nan 0.3126 0.9937 nan 0.2729 0.9649
0.0527 60.0 120 0.1298 0.6252 0.6655 0.9648 nan 0.3391 0.9920 nan 0.2860 0.9643
0.0491 65.0 130 0.1313 0.6110 0.6492 0.9635 nan 0.3063 0.9920 nan 0.2589 0.9631
0.0441 70.0 140 0.1295 0.6103 0.6429 0.9648 nan 0.2919 0.9939 nan 0.2562 0.9643
0.0426 75.0 150 0.1233 0.6271 0.6633 0.9659 nan 0.3333 0.9933 nan 0.2887 0.9654
0.0477 80.0 160 0.1286 0.6255 0.6629 0.9655 nan 0.3328 0.9929 nan 0.2861 0.9650
0.039 85.0 170 0.1265 0.6380 0.6824 0.9656 nan 0.3735 0.9913 nan 0.3109 0.9650
0.0378 90.0 180 0.1309 0.6185 0.6543 0.9650 nan 0.3154 0.9932 nan 0.2725 0.9645
0.0362 95.0 190 0.1266 0.6311 0.6715 0.9655 nan 0.3508 0.9922 nan 0.2973 0.9650
0.0394 100.0 200 0.1307 0.6274 0.6635 0.9659 nan 0.3337 0.9934 nan 0.2894 0.9655
0.0362 105.0 210 0.1271 0.6366 0.6789 0.9658 nan 0.3661 0.9918 nan 0.3080 0.9653
0.0361 110.0 220 0.1274 0.6317 0.6736 0.9653 nan 0.3554 0.9918 nan 0.2987 0.9648
0.0353 115.0 230 0.1290 0.6216 0.6579 0.9652 nan 0.3228 0.9931 nan 0.2784 0.9647
0.0344 120.0 240 0.1296 0.6242 0.6623 0.9652 nan 0.3319 0.9926 nan 0.2838 0.9647

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.