dropoff-utcustom-train-SF-RGBD-b5_2

This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4198
  • Mean Iou: 0.3194
  • Mean Accuracy: 0.4998
  • Overall Accuracy: 0.9558
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.0023
  • Accuracy Undropoff: 0.9972
  • Iou Unlabeled: 0.0
  • Iou Dropoff: 0.0022
  • Iou Undropoff: 0.9558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
0.989 5.0 10 1.0190 0.2162 0.5831 0.5879 nan 0.5779 0.5883 0.0 0.0657 0.5829
0.9092 10.0 20 0.8686 0.3164 0.5199 0.8922 nan 0.1137 0.9260 0.0 0.0539 0.8953
0.8483 15.0 30 0.7438 0.3256 0.5234 0.9219 nan 0.0888 0.9581 0.0 0.0545 0.9224
0.7856 20.0 40 0.6571 0.3182 0.5013 0.9336 nan 0.0297 0.9728 0.0 0.0210 0.9335
0.7459 25.0 50 0.6144 0.3164 0.4980 0.9324 nan 0.0242 0.9718 0.0 0.0168 0.9324
0.7027 30.0 60 0.5861 0.3168 0.4975 0.9351 nan 0.0202 0.9748 0.0 0.0151 0.9353
0.6827 35.0 70 0.5568 0.3171 0.4975 0.9391 nan 0.0159 0.9791 0.0 0.0122 0.9391
0.6362 40.0 80 0.5405 0.3179 0.4982 0.9424 nan 0.0138 0.9827 0.0 0.0112 0.9425
0.6098 45.0 90 0.5192 0.3174 0.4971 0.9449 nan 0.0087 0.9855 0.0 0.0073 0.9449
0.5946 50.0 100 0.5025 0.3179 0.4978 0.9475 nan 0.0072 0.9883 0.0 0.0062 0.9477
0.5868 55.0 110 0.4943 0.3179 0.4976 0.9490 nan 0.0052 0.9900 0.0 0.0046 0.9491
0.5557 60.0 120 0.4798 0.3184 0.4983 0.9505 nan 0.0051 0.9915 0.0 0.0045 0.9506
0.5327 65.0 130 0.4736 0.3184 0.4983 0.9514 nan 0.0041 0.9925 0.0 0.0038 0.9514
0.525 70.0 140 0.4657 0.3187 0.4987 0.9526 nan 0.0038 0.9937 0.0 0.0035 0.9526
0.5266 75.0 150 0.4528 0.3190 0.4992 0.9534 nan 0.0037 0.9946 0.0 0.0034 0.9535
0.5139 80.0 160 0.4538 0.3189 0.4991 0.9533 nan 0.0037 0.9945 0.0 0.0035 0.9534
0.5128 85.0 170 0.4460 0.3192 0.4995 0.9543 nan 0.0033 0.9956 0.0 0.0031 0.9543
0.4901 90.0 180 0.4371 0.3192 0.4995 0.9548 nan 0.0029 0.9961 0.0 0.0027 0.9548
0.4767 95.0 190 0.4325 0.3193 0.4997 0.9552 nan 0.0029 0.9965 0.0 0.0027 0.9552
0.4692 100.0 200 0.4272 0.3193 0.4997 0.9556 nan 0.0024 0.9970 0.0 0.0023 0.9556
0.4632 105.0 210 0.4251 0.3193 0.4996 0.9556 nan 0.0023 0.9969 0.0 0.0023 0.9556
0.4626 110.0 220 0.4236 0.3193 0.4997 0.9556 nan 0.0024 0.9970 0.0 0.0024 0.9556
0.4837 115.0 230 0.4216 0.3194 0.4998 0.9558 nan 0.0023 0.9972 0.0 0.0023 0.9558
0.4809 120.0 240 0.4198 0.3194 0.4998 0.9558 nan 0.0023 0.9972 0.0 0.0022 0.9558

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
145
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.