dropoff-utcustom-train-SF-RGBD-b5_2
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4198
- Mean Iou: 0.3194
- Mean Accuracy: 0.4998
- Overall Accuracy: 0.9558
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0023
- Accuracy Undropoff: 0.9972
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0022
- Iou Undropoff: 0.9558
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.989 | 5.0 | 10 | 1.0190 | 0.2162 | 0.5831 | 0.5879 | nan | 0.5779 | 0.5883 | 0.0 | 0.0657 | 0.5829 |
0.9092 | 10.0 | 20 | 0.8686 | 0.3164 | 0.5199 | 0.8922 | nan | 0.1137 | 0.9260 | 0.0 | 0.0539 | 0.8953 |
0.8483 | 15.0 | 30 | 0.7438 | 0.3256 | 0.5234 | 0.9219 | nan | 0.0888 | 0.9581 | 0.0 | 0.0545 | 0.9224 |
0.7856 | 20.0 | 40 | 0.6571 | 0.3182 | 0.5013 | 0.9336 | nan | 0.0297 | 0.9728 | 0.0 | 0.0210 | 0.9335 |
0.7459 | 25.0 | 50 | 0.6144 | 0.3164 | 0.4980 | 0.9324 | nan | 0.0242 | 0.9718 | 0.0 | 0.0168 | 0.9324 |
0.7027 | 30.0 | 60 | 0.5861 | 0.3168 | 0.4975 | 0.9351 | nan | 0.0202 | 0.9748 | 0.0 | 0.0151 | 0.9353 |
0.6827 | 35.0 | 70 | 0.5568 | 0.3171 | 0.4975 | 0.9391 | nan | 0.0159 | 0.9791 | 0.0 | 0.0122 | 0.9391 |
0.6362 | 40.0 | 80 | 0.5405 | 0.3179 | 0.4982 | 0.9424 | nan | 0.0138 | 0.9827 | 0.0 | 0.0112 | 0.9425 |
0.6098 | 45.0 | 90 | 0.5192 | 0.3174 | 0.4971 | 0.9449 | nan | 0.0087 | 0.9855 | 0.0 | 0.0073 | 0.9449 |
0.5946 | 50.0 | 100 | 0.5025 | 0.3179 | 0.4978 | 0.9475 | nan | 0.0072 | 0.9883 | 0.0 | 0.0062 | 0.9477 |
0.5868 | 55.0 | 110 | 0.4943 | 0.3179 | 0.4976 | 0.9490 | nan | 0.0052 | 0.9900 | 0.0 | 0.0046 | 0.9491 |
0.5557 | 60.0 | 120 | 0.4798 | 0.3184 | 0.4983 | 0.9505 | nan | 0.0051 | 0.9915 | 0.0 | 0.0045 | 0.9506 |
0.5327 | 65.0 | 130 | 0.4736 | 0.3184 | 0.4983 | 0.9514 | nan | 0.0041 | 0.9925 | 0.0 | 0.0038 | 0.9514 |
0.525 | 70.0 | 140 | 0.4657 | 0.3187 | 0.4987 | 0.9526 | nan | 0.0038 | 0.9937 | 0.0 | 0.0035 | 0.9526 |
0.5266 | 75.0 | 150 | 0.4528 | 0.3190 | 0.4992 | 0.9534 | nan | 0.0037 | 0.9946 | 0.0 | 0.0034 | 0.9535 |
0.5139 | 80.0 | 160 | 0.4538 | 0.3189 | 0.4991 | 0.9533 | nan | 0.0037 | 0.9945 | 0.0 | 0.0035 | 0.9534 |
0.5128 | 85.0 | 170 | 0.4460 | 0.3192 | 0.4995 | 0.9543 | nan | 0.0033 | 0.9956 | 0.0 | 0.0031 | 0.9543 |
0.4901 | 90.0 | 180 | 0.4371 | 0.3192 | 0.4995 | 0.9548 | nan | 0.0029 | 0.9961 | 0.0 | 0.0027 | 0.9548 |
0.4767 | 95.0 | 190 | 0.4325 | 0.3193 | 0.4997 | 0.9552 | nan | 0.0029 | 0.9965 | 0.0 | 0.0027 | 0.9552 |
0.4692 | 100.0 | 200 | 0.4272 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0023 | 0.9556 |
0.4632 | 105.0 | 210 | 0.4251 | 0.3193 | 0.4996 | 0.9556 | nan | 0.0023 | 0.9969 | 0.0 | 0.0023 | 0.9556 |
0.4626 | 110.0 | 220 | 0.4236 | 0.3193 | 0.4997 | 0.9556 | nan | 0.0024 | 0.9970 | 0.0 | 0.0024 | 0.9556 |
0.4837 | 115.0 | 230 | 0.4216 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0023 | 0.9558 |
0.4809 | 120.0 | 240 | 0.4198 | 0.3194 | 0.4998 | 0.9558 | nan | 0.0023 | 0.9972 | 0.0 | 0.0022 | 0.9558 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 145
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.