dropoff-utcustom-train-SF-RGBD-b0_2
This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4274
- Mean Iou: 0.6102
- Mean Accuracy: 0.6603
- Overall Accuracy: 0.9607
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3326
- Accuracy Undropoff: 0.9879
- Iou Unlabeled: nan
- Iou Dropoff: 0.2602
- Iou Undropoff: 0.9601
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0555 | 5.0 | 10 | 1.0734 | 0.2254 | 0.4211 | 0.6018 | nan | 0.2240 | 0.6182 | 0.0 | 0.0622 | 0.6140 |
0.9825 | 10.0 | 20 | 1.0261 | 0.2992 | 0.6380 | 0.7780 | nan | 0.4852 | 0.7907 | 0.0 | 0.1170 | 0.7807 |
0.8991 | 15.0 | 30 | 0.8985 | 0.3231 | 0.5517 | 0.8892 | nan | 0.1836 | 0.9198 | 0.0 | 0.0776 | 0.8917 |
0.8191 | 20.0 | 40 | 0.7413 | 0.3270 | 0.5262 | 0.9299 | nan | 0.0858 | 0.9665 | 0.0 | 0.0513 | 0.9296 |
0.7562 | 25.0 | 50 | 0.6268 | 0.3259 | 0.5130 | 0.9436 | nan | 0.0433 | 0.9826 | 0.0 | 0.0343 | 0.9435 |
0.7395 | 30.0 | 60 | 0.5872 | 0.3235 | 0.5073 | 0.9498 | nan | 0.0246 | 0.9900 | 0.0 | 0.0206 | 0.9498 |
0.7272 | 35.0 | 70 | 0.5820 | 0.3379 | 0.5415 | 0.9411 | nan | 0.1055 | 0.9774 | 0.0 | 0.0729 | 0.9409 |
0.6525 | 40.0 | 80 | 0.5571 | 0.3445 | 0.5451 | 0.9498 | nan | 0.1036 | 0.9865 | 0.0 | 0.0839 | 0.9496 |
0.6161 | 45.0 | 90 | 0.5465 | 0.3480 | 0.5480 | 0.9528 | nan | 0.1064 | 0.9895 | 0.0 | 0.0914 | 0.9526 |
0.6131 | 50.0 | 100 | 0.5379 | 0.3712 | 0.5917 | 0.9555 | nan | 0.1949 | 0.9885 | 0.0 | 0.1584 | 0.9551 |
0.579 | 55.0 | 110 | 0.5229 | 0.3892 | 0.6411 | 0.9536 | nan | 0.3002 | 0.9819 | 0.0 | 0.2146 | 0.9530 |
0.5133 | 60.0 | 120 | 0.5113 | 0.3962 | 0.6596 | 0.9541 | nan | 0.3384 | 0.9808 | 0.0 | 0.2352 | 0.9535 |
0.535 | 65.0 | 130 | 0.4925 | 0.3981 | 0.6566 | 0.9561 | nan | 0.3299 | 0.9833 | 0.0 | 0.2386 | 0.9555 |
0.4866 | 70.0 | 140 | 0.4717 | 0.5993 | 0.6516 | 0.9584 | nan | 0.3169 | 0.9863 | nan | 0.2407 | 0.9579 |
0.5119 | 75.0 | 150 | 0.4712 | 0.5976 | 0.6513 | 0.9578 | nan | 0.3171 | 0.9856 | nan | 0.2380 | 0.9572 |
0.5034 | 80.0 | 160 | 0.4737 | 0.6120 | 0.6840 | 0.9562 | nan | 0.3872 | 0.9808 | nan | 0.2686 | 0.9554 |
0.4503 | 85.0 | 170 | 0.4496 | 0.6103 | 0.6618 | 0.9604 | nan | 0.3361 | 0.9875 | nan | 0.2607 | 0.9598 |
0.4653 | 90.0 | 180 | 0.4617 | 0.6201 | 0.6907 | 0.9580 | nan | 0.3992 | 0.9822 | nan | 0.2830 | 0.9572 |
0.4375 | 95.0 | 190 | 0.4412 | 0.6090 | 0.6592 | 0.9605 | nan | 0.3305 | 0.9878 | nan | 0.2580 | 0.9599 |
0.4306 | 100.0 | 200 | 0.4355 | 0.6120 | 0.6653 | 0.9602 | nan | 0.3436 | 0.9870 | nan | 0.2643 | 0.9597 |
0.4456 | 105.0 | 210 | 0.4414 | 0.6178 | 0.6756 | 0.9601 | nan | 0.3653 | 0.9860 | nan | 0.2760 | 0.9595 |
0.4435 | 110.0 | 220 | 0.4387 | 0.6150 | 0.6681 | 0.9608 | nan | 0.3489 | 0.9873 | nan | 0.2699 | 0.9602 |
0.4263 | 115.0 | 230 | 0.4348 | 0.6156 | 0.6692 | 0.9607 | nan | 0.3512 | 0.9872 | nan | 0.2711 | 0.9602 |
0.4123 | 120.0 | 240 | 0.4274 | 0.6102 | 0.6603 | 0.9607 | nan | 0.3326 | 0.9879 | nan | 0.2602 | 0.9601 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.