dropoff-utcustom-train-SF-RGBD-b0_2

This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4274
  • Mean Iou: 0.6102
  • Mean Accuracy: 0.6603
  • Overall Accuracy: 0.9607
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.3326
  • Accuracy Undropoff: 0.9879
  • Iou Unlabeled: nan
  • Iou Dropoff: 0.2602
  • Iou Undropoff: 0.9601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
1.0555 5.0 10 1.0734 0.2254 0.4211 0.6018 nan 0.2240 0.6182 0.0 0.0622 0.6140
0.9825 10.0 20 1.0261 0.2992 0.6380 0.7780 nan 0.4852 0.7907 0.0 0.1170 0.7807
0.8991 15.0 30 0.8985 0.3231 0.5517 0.8892 nan 0.1836 0.9198 0.0 0.0776 0.8917
0.8191 20.0 40 0.7413 0.3270 0.5262 0.9299 nan 0.0858 0.9665 0.0 0.0513 0.9296
0.7562 25.0 50 0.6268 0.3259 0.5130 0.9436 nan 0.0433 0.9826 0.0 0.0343 0.9435
0.7395 30.0 60 0.5872 0.3235 0.5073 0.9498 nan 0.0246 0.9900 0.0 0.0206 0.9498
0.7272 35.0 70 0.5820 0.3379 0.5415 0.9411 nan 0.1055 0.9774 0.0 0.0729 0.9409
0.6525 40.0 80 0.5571 0.3445 0.5451 0.9498 nan 0.1036 0.9865 0.0 0.0839 0.9496
0.6161 45.0 90 0.5465 0.3480 0.5480 0.9528 nan 0.1064 0.9895 0.0 0.0914 0.9526
0.6131 50.0 100 0.5379 0.3712 0.5917 0.9555 nan 0.1949 0.9885 0.0 0.1584 0.9551
0.579 55.0 110 0.5229 0.3892 0.6411 0.9536 nan 0.3002 0.9819 0.0 0.2146 0.9530
0.5133 60.0 120 0.5113 0.3962 0.6596 0.9541 nan 0.3384 0.9808 0.0 0.2352 0.9535
0.535 65.0 130 0.4925 0.3981 0.6566 0.9561 nan 0.3299 0.9833 0.0 0.2386 0.9555
0.4866 70.0 140 0.4717 0.5993 0.6516 0.9584 nan 0.3169 0.9863 nan 0.2407 0.9579
0.5119 75.0 150 0.4712 0.5976 0.6513 0.9578 nan 0.3171 0.9856 nan 0.2380 0.9572
0.5034 80.0 160 0.4737 0.6120 0.6840 0.9562 nan 0.3872 0.9808 nan 0.2686 0.9554
0.4503 85.0 170 0.4496 0.6103 0.6618 0.9604 nan 0.3361 0.9875 nan 0.2607 0.9598
0.4653 90.0 180 0.4617 0.6201 0.6907 0.9580 nan 0.3992 0.9822 nan 0.2830 0.9572
0.4375 95.0 190 0.4412 0.6090 0.6592 0.9605 nan 0.3305 0.9878 nan 0.2580 0.9599
0.4306 100.0 200 0.4355 0.6120 0.6653 0.9602 nan 0.3436 0.9870 nan 0.2643 0.9597
0.4456 105.0 210 0.4414 0.6178 0.6756 0.9601 nan 0.3653 0.9860 nan 0.2760 0.9595
0.4435 110.0 220 0.4387 0.6150 0.6681 0.9608 nan 0.3489 0.9873 nan 0.2699 0.9602
0.4263 115.0 230 0.4348 0.6156 0.6692 0.9607 nan 0.3512 0.9872 nan 0.2711 0.9602
0.4123 120.0 240 0.4274 0.6102 0.6603 0.9607 nan 0.3326 0.9879 nan 0.2602 0.9601

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.