dropoff-utcustom-train-SF-RGB-b5_6
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.2315
- Mean Iou: 0.6980
- Mean Accuracy: 0.7503
- Overall Accuracy: 0.9714
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.5091
- Accuracy Undropoff: 0.9915
- Iou Unlabeled: nan
- Iou Dropoff: 0.4253
- Iou Undropoff: 0.9708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0694 | 5.0 | 10 | 1.0190 | 0.2533 | 0.6371 | 0.6676 | nan | 0.6038 | 0.6703 | 0.0 | 0.0976 | 0.6624 |
0.8457 | 10.0 | 20 | 0.7681 | 0.4126 | 0.7662 | 0.9307 | nan | 0.5867 | 0.9457 | 0.0 | 0.3078 | 0.9300 |
0.6049 | 15.0 | 30 | 0.5718 | 0.4362 | 0.7527 | 0.9568 | nan | 0.5301 | 0.9753 | 0.0 | 0.3527 | 0.9561 |
0.5206 | 20.0 | 40 | 0.4181 | 0.4522 | 0.7468 | 0.9662 | nan | 0.5076 | 0.9861 | 0.0 | 0.3909 | 0.9656 |
0.3478 | 25.0 | 50 | 0.3144 | 0.4603 | 0.7376 | 0.9709 | nan | 0.4832 | 0.9920 | 0.0 | 0.4105 | 0.9705 |
0.2023 | 30.0 | 60 | 0.2893 | 0.4654 | 0.7612 | 0.9701 | nan | 0.5332 | 0.9891 | 0.0 | 0.4267 | 0.9695 |
0.1367 | 35.0 | 70 | 0.2351 | 0.6813 | 0.7176 | 0.9715 | nan | 0.4407 | 0.9946 | nan | 0.3916 | 0.9710 |
0.1272 | 40.0 | 80 | 0.2364 | 0.6824 | 0.7217 | 0.9713 | nan | 0.4495 | 0.9939 | nan | 0.3941 | 0.9707 |
0.0929 | 45.0 | 90 | 0.2536 | 0.4704 | 0.7617 | 0.9718 | nan | 0.5326 | 0.9909 | 0.0 | 0.4401 | 0.9712 |
0.0756 | 50.0 | 100 | 0.2253 | 0.6950 | 0.7479 | 0.9710 | nan | 0.5045 | 0.9912 | nan | 0.4197 | 0.9704 |
0.0756 | 55.0 | 110 | 0.2305 | 0.7043 | 0.7606 | 0.9716 | nan | 0.5305 | 0.9908 | nan | 0.4375 | 0.9710 |
0.0721 | 60.0 | 120 | 0.2213 | 0.6964 | 0.7448 | 0.9716 | nan | 0.4974 | 0.9922 | nan | 0.4218 | 0.9711 |
0.0683 | 65.0 | 130 | 0.2338 | 0.7047 | 0.7631 | 0.9715 | nan | 0.5359 | 0.9904 | nan | 0.4385 | 0.9708 |
0.0642 | 70.0 | 140 | 0.2314 | 0.7046 | 0.7637 | 0.9714 | nan | 0.5373 | 0.9902 | nan | 0.4385 | 0.9707 |
0.0623 | 75.0 | 150 | 0.2205 | 0.7013 | 0.7565 | 0.9714 | nan | 0.5222 | 0.9909 | nan | 0.4317 | 0.9708 |
0.0601 | 80.0 | 160 | 0.2209 | 0.6983 | 0.7496 | 0.9715 | nan | 0.5075 | 0.9917 | nan | 0.4257 | 0.9709 |
0.0557 | 85.0 | 170 | 0.2067 | 0.6982 | 0.7463 | 0.9719 | nan | 0.5003 | 0.9923 | nan | 0.4252 | 0.9713 |
0.0571 | 90.0 | 180 | 0.2354 | 0.7022 | 0.7603 | 0.9712 | nan | 0.5302 | 0.9904 | nan | 0.4339 | 0.9706 |
0.0544 | 95.0 | 190 | 0.2240 | 0.7010 | 0.7562 | 0.9714 | nan | 0.5215 | 0.9909 | nan | 0.4311 | 0.9708 |
0.0553 | 100.0 | 200 | 0.2204 | 0.6968 | 0.7454 | 0.9717 | nan | 0.4987 | 0.9922 | nan | 0.4225 | 0.9711 |
0.0525 | 105.0 | 210 | 0.2332 | 0.7050 | 0.7625 | 0.9716 | nan | 0.5344 | 0.9906 | nan | 0.4390 | 0.9710 |
0.0524 | 110.0 | 220 | 0.2371 | 0.7033 | 0.7605 | 0.9715 | nan | 0.5304 | 0.9906 | nan | 0.4359 | 0.9708 |
0.0513 | 115.0 | 230 | 0.2333 | 0.6987 | 0.7519 | 0.9714 | nan | 0.5125 | 0.9913 | nan | 0.4267 | 0.9707 |
0.0537 | 120.0 | 240 | 0.2315 | 0.6980 | 0.7503 | 0.9714 | nan | 0.5091 | 0.9915 | nan | 0.4253 | 0.9708 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.