dropoff-utcustom-train-SF-RGB-b5_2
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.4848
- Mean Iou: 0.4257
- Mean Accuracy: 0.7972
- Overall Accuracy: 0.9466
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.6343
- Accuracy Undropoff: 0.9601
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3321
- Iou Undropoff: 0.9451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0108 | 5.0 | 10 | 1.0721 | 0.1514 | 0.5401 | 0.4205 | nan | 0.6706 | 0.4096 | 0.0 | 0.0494 | 0.4047 |
0.9654 | 10.0 | 20 | 0.9802 | 0.2190 | 0.6570 | 0.5944 | nan | 0.7253 | 0.5887 | 0.0 | 0.0745 | 0.5826 |
0.9175 | 15.0 | 30 | 0.9047 | 0.2553 | 0.7350 | 0.6792 | nan | 0.7960 | 0.6741 | 0.0 | 0.0973 | 0.6686 |
0.9052 | 20.0 | 40 | 0.8427 | 0.2812 | 0.7661 | 0.7377 | nan | 0.7971 | 0.7351 | 0.0 | 0.1146 | 0.7290 |
0.8555 | 25.0 | 50 | 0.7970 | 0.3063 | 0.7827 | 0.7900 | nan | 0.7748 | 0.7906 | 0.0 | 0.1357 | 0.7832 |
0.8291 | 30.0 | 60 | 0.7543 | 0.3289 | 0.7891 | 0.8332 | nan | 0.7410 | 0.8372 | 0.0 | 0.1586 | 0.8282 |
0.7923 | 35.0 | 70 | 0.7327 | 0.3375 | 0.7961 | 0.8471 | nan | 0.7405 | 0.8517 | 0.0 | 0.1701 | 0.8425 |
0.7724 | 40.0 | 80 | 0.6994 | 0.3529 | 0.7968 | 0.8719 | nan | 0.7149 | 0.8787 | 0.0 | 0.1906 | 0.8682 |
0.7215 | 45.0 | 90 | 0.6675 | 0.3694 | 0.7935 | 0.8954 | nan | 0.6824 | 0.9047 | 0.0 | 0.2157 | 0.8926 |
0.6907 | 50.0 | 100 | 0.6521 | 0.3742 | 0.7998 | 0.9000 | nan | 0.6904 | 0.9091 | 0.0 | 0.2252 | 0.8973 |
0.6768 | 55.0 | 110 | 0.6260 | 0.3850 | 0.8022 | 0.9118 | nan | 0.6827 | 0.9217 | 0.0 | 0.2455 | 0.9094 |
0.659 | 60.0 | 120 | 0.6010 | 0.3965 | 0.7973 | 0.9244 | nan | 0.6586 | 0.9359 | 0.0 | 0.2671 | 0.9224 |
0.6265 | 65.0 | 130 | 0.5847 | 0.4005 | 0.7992 | 0.9276 | nan | 0.6592 | 0.9393 | 0.0 | 0.2757 | 0.9258 |
0.6134 | 70.0 | 140 | 0.5673 | 0.4060 | 0.8022 | 0.9316 | nan | 0.6611 | 0.9433 | 0.0 | 0.2881 | 0.9297 |
0.5864 | 75.0 | 150 | 0.5401 | 0.4132 | 0.7961 | 0.9383 | nan | 0.6410 | 0.9511 | 0.0 | 0.3029 | 0.9366 |
0.5686 | 80.0 | 160 | 0.5289 | 0.4153 | 0.7974 | 0.9395 | nan | 0.6424 | 0.9524 | 0.0 | 0.3080 | 0.9379 |
0.5597 | 85.0 | 170 | 0.5386 | 0.4114 | 0.8079 | 0.9350 | nan | 0.6692 | 0.9465 | 0.0 | 0.3011 | 0.9331 |
0.5718 | 90.0 | 180 | 0.5080 | 0.4210 | 0.7947 | 0.9438 | nan | 0.6321 | 0.9573 | 0.0 | 0.3208 | 0.9423 |
0.517 | 95.0 | 190 | 0.5026 | 0.4222 | 0.7956 | 0.9445 | nan | 0.6332 | 0.9580 | 0.0 | 0.3236 | 0.9430 |
0.5252 | 100.0 | 200 | 0.4990 | 0.4232 | 0.7969 | 0.9450 | nan | 0.6354 | 0.9584 | 0.0 | 0.3261 | 0.9435 |
0.5174 | 105.0 | 210 | 0.4951 | 0.4223 | 0.8012 | 0.9437 | nan | 0.6457 | 0.9567 | 0.0 | 0.3249 | 0.9422 |
0.5217 | 110.0 | 220 | 0.4882 | 0.4238 | 0.7993 | 0.9450 | nan | 0.6404 | 0.9582 | 0.0 | 0.3280 | 0.9435 |
0.5224 | 115.0 | 230 | 0.4846 | 0.4258 | 0.7968 | 0.9467 | nan | 0.6333 | 0.9603 | 0.0 | 0.3321 | 0.9452 |
0.5399 | 120.0 | 240 | 0.4848 | 0.4257 | 0.7972 | 0.9466 | nan | 0.6343 | 0.9601 | 0.0 | 0.3321 | 0.9451 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support