dropoff-utcustom-train-SF-RGB-b0_4

This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3032
  • Mean Iou: 0.6301
  • Mean Accuracy: 0.6710
  • Overall Accuracy: 0.9634
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.3502
  • Accuracy Undropoff: 0.9918
  • Iou Unlabeled: nan
  • Iou Dropoff: 0.2973
  • Iou Undropoff: 0.9628

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
1.0311 3.33 10 1.0742 0.2063 0.6373 0.5492 nan 0.7339 0.5406 0.0 0.0848 0.5342
0.9741 6.67 20 1.0151 0.3072 0.8067 0.7686 nan 0.8485 0.7649 0.0 0.1619 0.7596
0.9441 10.0 30 0.9345 0.3432 0.8327 0.8408 nan 0.8239 0.8416 0.0 0.1947 0.8348
0.8222 13.33 40 0.8358 0.3643 0.8236 0.8773 nan 0.7646 0.8825 0.0 0.2199 0.8731
0.7243 16.67 50 0.7135 0.3924 0.7838 0.9194 nan 0.6350 0.9325 0.0 0.2603 0.9170
0.7213 20.0 60 0.6358 0.4054 0.7528 0.9374 nan 0.5502 0.9554 0.0 0.2805 0.9359
0.5836 23.33 70 0.5604 0.4211 0.7412 0.9505 nan 0.5115 0.9708 0.0 0.3139 0.9493
0.5285 26.67 80 0.5227 0.4281 0.7570 0.9519 nan 0.5432 0.9708 0.0 0.3335 0.9507
0.4955 30.0 90 0.4478 0.4191 0.6945 0.9581 nan 0.4052 0.9837 0.0 0.2999 0.9573
0.4646 33.33 100 0.4537 0.4215 0.6998 0.9584 nan 0.4161 0.9835 0.0 0.3069 0.9576
0.4356 36.67 110 0.4454 0.4224 0.7105 0.9569 nan 0.4402 0.9808 0.0 0.3112 0.9560
0.4829 40.0 120 0.4099 0.4196 0.6901 0.9593 nan 0.3947 0.9854 0.0 0.3002 0.9585
0.4051 43.33 130 0.3911 0.6267 0.6784 0.9607 nan 0.3687 0.9881 nan 0.2933 0.9600
0.3916 46.67 140 0.3841 0.4183 0.6897 0.9586 nan 0.3946 0.9847 0.0 0.2969 0.9579
0.3713 50.0 150 0.3788 0.4248 0.7001 0.9600 nan 0.4149 0.9853 0.0 0.3150 0.9593
0.359 53.33 160 0.3719 0.6254 0.6761 0.9607 nan 0.3639 0.9883 nan 0.2908 0.9601
0.3459 56.67 170 0.3610 0.6245 0.6774 0.9601 nan 0.3673 0.9876 nan 0.2895 0.9594
0.3099 60.0 180 0.3455 0.6246 0.6687 0.9620 nan 0.3468 0.9905 nan 0.2879 0.9614
0.3124 63.33 190 0.3436 0.6277 0.6763 0.9615 nan 0.3634 0.9892 nan 0.2946 0.9608
0.3283 66.67 200 0.3344 0.6237 0.6607 0.9634 nan 0.3286 0.9928 nan 0.2845 0.9629
0.2974 70.0 210 0.3412 0.6312 0.6817 0.9616 nan 0.3746 0.9888 nan 0.3014 0.9609
0.3003 73.33 220 0.3322 0.6320 0.6877 0.9607 nan 0.3881 0.9872 nan 0.3041 0.9600
0.2968 76.67 230 0.3289 0.6344 0.6807 0.9628 nan 0.3712 0.9902 nan 0.3066 0.9622
0.4415 80.0 240 0.3333 0.6320 0.6800 0.9622 nan 0.3705 0.9896 nan 0.3024 0.9615
0.2836 83.33 250 0.3271 0.6287 0.6757 0.9619 nan 0.3617 0.9897 nan 0.2960 0.9613
0.2762 86.67 260 0.3203 0.6263 0.6673 0.9629 nan 0.3429 0.9916 nan 0.2903 0.9623
0.3901 90.0 270 0.3186 0.6290 0.6787 0.9614 nan 0.3685 0.9889 nan 0.2971 0.9608
0.2755 93.33 280 0.3086 0.6283 0.6693 0.9631 nan 0.3468 0.9917 nan 0.2940 0.9625
0.2652 96.67 290 0.3099 0.6302 0.6779 0.9620 nan 0.3661 0.9896 nan 0.2991 0.9614
0.2627 100.0 300 0.3056 0.6294 0.6728 0.9627 nan 0.3548 0.9909 nan 0.2966 0.9622
0.2647 103.33 310 0.3036 0.6292 0.6689 0.9635 nan 0.3458 0.9921 nan 0.2954 0.9629
0.2697 106.67 320 0.3043 0.6298 0.6713 0.9632 nan 0.3510 0.9916 nan 0.2970 0.9626
0.3878 110.0 330 0.3037 0.6297 0.6740 0.9626 nan 0.3573 0.9907 nan 0.2973 0.9620
0.2521 113.33 340 0.3013 0.6300 0.6714 0.9633 nan 0.3513 0.9916 nan 0.2974 0.9627
0.2663 116.67 350 0.3060 0.6298 0.6766 0.9621 nan 0.3634 0.9899 nan 0.2981 0.9615
0.2507 120.0 360 0.3032 0.6301 0.6710 0.9634 nan 0.3502 0.9918 nan 0.2973 0.9628

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
145
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support